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Guaranteed Cost Control for Uncertain Time-Delay Systems
with nonlinear Perturbations via Delayed Feedback

Aol s F
(Oh-Min Kwon and Ju-Hyun Park)

Abstract : In this paper, we propose a delayed feedback guaranteed cost controller design method for linear time-delay systems with
norm-bounded parameter uncertainties and nonlinear perturbations. A quadratic cost function is considered as the performance
measure for the given system. Based on the Lyapunov method, an LMI optimization problem is formulated to design a controller
such that the closed-loop cost function value is not more than a specified upper bound for all admissible system uncertainties and
nonlinear perturbations. Numerical example show the effectiveness of the proposed method.
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L. Introduction

Since the guaranteed cost control was first introduced by Cheng
and Peng[15], many researchers have presented the robust
controller design method for uncertain time-delay systems to
improve the system performance. These methods can be classified
into two categories: delay-independent approach[5,9,10,13] and
delay-dependent ones[2,18,23-28]. In general, delay dependent
method is less conservative than delay independent method
especially when the size of the delays is small[16]. The structure
of the controllers in [2,18,24-26,28] is memoryless state-feedback
ones. These have merits that it is simple and easy to implement.
However, these memoryless state-feedback controllers have some
limits to improve system performance for time-delay systems
because the controller uses only the current states. Thus, if we
design a delayed feedback controller, we may provide a better
performance. This property have been shown in the
literature[14,17,19,27].

In real world, we can encounter the systems with nonlinear
perturbations[20,29]. These lead the system to an unexpectedly
complicated situations, thereby leading to very complex dynamic
behaviors. In design of a controller for such a complex system, it
is important to ensure that the system be stable with respect to
these nonlinear perturbations. However, to the best of our
knowledge, few results have been reported in the literature
concerning the methods of designing a controller for time-delay
systems having both parameter uncertainties and nonlinear
perturbations.

In this paper, we study the problems of a guaranteed cost
controller design for linear time-delay systems with norm-
bounded parameter uncertainties and nonlinear perturbations. The
perturbations are a nonlinear function of time, current state and
delayed state. By using the neutral model transformation[8] and
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the Lyapunov function method, an LMI optimization approach
problem is formulated to design a controllerm, which stabilizes
given uncertain linear systems with time-delay and minimizes the
upper bound value of the cost function. This controller has
feedback provisions o the current state and the retarded state
integral. We also include numerical examples that show our
results are less conservative than those of the existing methods.
Notations: A_ (X) and A_ (X) are the minimum and

‘min ‘max

refers to the Euclidean vector

maximum eigenvalues of X. H|

norm of the induced matrix two-norm.. R” is the n-dimensional
Euclidean space, R™" denotes the set of mxn real matrix.
diag{---} denotes the block diagonal matrix. L,[a,b] is the
space of the square integral function on the interval [a,b].

C([0 «),R") denotes the Banach space of continuous vector

functions from [0 ) to R". (*) means the elements below

the main diagonal of a symmetric block matrix.

I1. Problem Statements
Consider the following uncertain time-delay system with norm-
bounded parameter uncertainties and nonlinear perturbations:

X(1) = (A+ AAD)x() + (A4, + A4, (D))x(t — h)
+(B+AB()u(t)+ f{t,x(t),x(t — h)) 1)
x(8)=¢(s), s e[-h, 0]
where x(f)e R" is the state, u(f)€ R" is the control input,
A,4,, and B are known real parameter matrices of appropriate
dimensions, AA(#),AA4,(t), and AB(?)are norm-bounded time-
varying uncertainties, f(¢,x(¢),x(t —h)) is nonlinear parameter
perturbation with respect to the current state x(f) and the
delayed state x(t—#h), A is a known constant delay, and
#(s)e L,[-h,0] is a given continuous vector valued initial
function. The parameter uncertainties AA(¢),A4,(z), and AB(r)

have the following form:



582

AA(r) =D1Fl(t)En A4 (5) = Dze(t)Eza AB(t) = D3F3(t)E3

where D,, E,(i=1,2,3) are known real constant matrices of

appropriate  dimensions, and F.(f)eR*" are unknown

matrices,
which satisfy

FT(OFAT)<1, (i=123).

Also, the nonlinear uncertainty 7(¢, x(¢), x(# — #)) is assumed to
be bounded in magnitude:

7 @t x(0), x(t = )| < B, x| + Bt - B

X @

where £, and g, are nonnegative constant scalar values.
We assume that the pair (4+ A4,,B) is controllable, and the

measurement of the state x() and the size of time-delay % are

always available. In order to consider system performance, we
define the following integral quadratic cost function

J= .[:[xr OW,x () +u” OW,u(0))dt, 3)

where W, and W, are given state and control weighting

matrices.
The objective of this paper is to design a controller

u(?) = Kz(7), @

which makes the system (1) stable and minimizes the upper
bound of the cost function. Here, z(¢) is defined as

20 =x(O)+ [ 4x(s)ds. )

This is the neural model transformation [8]. Differentiating z(r)

with respect to leads to

() = () + Ax(t) — Ax(t - h)
= (4, + ADx(t) + A x(t — k) + (B + AB)u(t) (6)
+ f(t,x(0),x(t~ h)

where A, = A+ 4. Substituting controller (4) to system (6), we

have
2(t) = (4, + A) + (B + AB)K)z(1) + Adx (¢t — h)

. 0]
+£(t,x(0), x(t — h)) — (4, + A4) j | Ax(s)ds.

We will need the following definition and lemmas to obtain the
main results.

Definition 1: For system (1) and cost function (3), if there
exist a control law u"(f) and a positive scalar J*, such that

for all admissible uncertainties, the closed-loop system is
asymptotically stable, and the closed-loop value of the cost

function satisfies J <J', then u'(¢) is said to be a guaranteed

cost control law for system (1), and J* is said to be a guaranteed
cost.

Mo - XHs3 - AABZE =2X K 13 A, M 6 & 2007. 6

Fact 1@ (Schur complement) Given constant symmetric
matrices X,Z,,Z;, where X, =% and 0<Z,=X, then
T, +321%,'E, <0 ifand only if

E; _Zéj<0, or Ii_;gz ij<0.

Fact 2. Let D, E,and A be real matrices of appropriate
dimensions with A = diag(A,,...,A,),A[A, <1, ,i=1,..,r. Then,
for any real matrix A =diag(41,...,4,1)>0, the following
inequality

DAE+E'NE<DAD" +E'A'E (8)

is always satisfied.
Lemma 1: [3] For a given positive scalar h>0 and a,

where 0 <o <1, if there exists a positive definite A4, such
that the LMI

—aM  hA'M
R <0
M4, - M

holds, then z(¢) is astable operator forany 4 <[0, ft].
Lemma 2: For any matrix Q> 0, F, and scalar #>0, the
following inequality holds:

, . Z(f) ! 0 0 Z(t)
—.[—hx (5)Ox(s)ds < Iihx(s)ds |:* F+FT:| J"ihx(s)ds

20 'ty ; ) 2(¢)
th J:[_hx(s)ds {F}Q [0 FJ th(s)ds-

Proof : Utilizing Fact 2, we have

- [ A (ox(ndy

<2f ([0 Fr]h’_hz,fz)ds}dy
z(t) ! 20
o { f,l_,,x((s)dsl LﬂQ“ [0 FT][ [ hx(s)dsldy‘
20 o =0
zzhl.hx“)dJ M[O FT][L/_hx(s)dsl
0 o 0
. h{ [ hx(s)ds} [ F}Q‘ [0 FT]{ L’_hx(s)ds}.

Remark 1: Lemma 2 is inspired by the integral-inequality
approach [22]. In the previous results[11,12], to obtain the upper

bound of the integral term, the bounding methods in [6] is utilized,
which is more conservative than the proposed one in Lemma 2.

III. Main results
In this section, we propose the method of designing a delayed
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feedback guaranteed cost controller for system (1). For simplicity,
we define

S = AX+XAT+BY +Y"BT + D/(A, +A)D]
+DyA,DI + D,ADY + ¢l
W' = [ p(s)g" (s)ds, O

NNE= [ [ pg” wyduds,

where X and A,(i =1,...,4) are positive definite matrices, Y is
a matrix with an appropriate dimension, and & are positive
scalar values. Now, we give our main results.

Theorem 1: Consider the system (1) with the cost function (3).
For a given constant delay 4, the following inequalities (10)-
(12) has a solution X >0,R>0,G>0,M >0, A, >0 =1,..,
4), matrix Y and L with appropriate dimensions, and a

positive scalar value &,

[z -4,4R 0O 0 hX X
* L+I' RATE] L -hRA -R4
* * -A, O 0 0
* * * _ R 0 0
* * * * _R 0
* * * * * _ Wf]
* * * * * *
* L3 * * * 3
* * * ES * *
* * * * * *
* % * * * 3
x  \28x  XE' Y'El ¥
—RA" -2B8R4AT 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 [<0, (10)
-G 0 0 0 0
* ~al 0 0 0
* * -A, 0 0
* * * _A3 0
% * % * _RZ_IJ
T
{_iw hf‘}\f}o, an
-G GE' 286
A, 0 |<0, (12)

* * —

then, controller u(¢) = ¥X'z(¢) is the guaranteed cost controller
for system (1) and the upper bound of the cost function (3) is

J<J" =27 (0)Pz(0) + j", ) 87 ()O(u)duds (13)
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0 7
+ [ 8 () Th(s)ds.
Proof : Consider the Lyapunov function candidate as

V(x)=z ({)Pz(t) + j’l_h J.: x" (W)Ox(u)duds + I:_h x"()Tx(s)ds,
(14

where the matrices P,Q, and T are positive matrices and
x, =x(t+s),s €[-h,0].
Define
Vi(x,)=22"()P(4, + A+ (B + AB)K)z(t)
~ 22T ())P(4, + M) [ '_hAlx(s)ds
+ 22T (O PF(t, x (1), x(t — 1))
+ 22T (O PAAx(t = 1) + hx” () Ox(F) (15)
- J:i;, x" ($)Ox(s)ds + x" ()Tx(r)
—x"(t = W)Tx(t — h) + x" (OW,x(6)
- 2" (OK W, Kz(2).

Taking the time-derivative of 7 (x,) leads to

V(x)=V(x)—x"(OWx(t) -z (VK W,Kz(?). 16)
By using Fact 2, we obtain
22" ())PD,F(H)E,2(t) an
<z"(O)PD A D] Pz(t)+ 2" () E] AV E,z(2),

22" (O)PD,F, (1) E,z(1) < (13)
2" ()PD,A,D] Pz(t) + 2" (¢t = D)E] AL E,z(t — h),

22" (1) PD,F,(t)E,Kz(t) (19)
<zZ"(O)PD,AD] Pz(t)+z" (1)K E] A E,Kz(8),

~2:"(OPDFOE, [ Ax(s)ds
<z" (OPD,A D Pz(1) (20)
+( f :_hx(s)ds)r ATETADE 4, ( [ '_hx(s)ds),
227 () Pf(t, x(£), x(t — h))

<z ()ePPz(t) + &7 f7 (8, x(), x(t — W) f(t, x(1), x(t — h)) (21)
< 2" ()ePPz(¢) + &7 2(BIxT (O)x(t) + Bix" (t — W)x(t — h)).

Letusdefine 7, = hQ+W, +T +2&"' 21, and then we have

K (OT(0) = 2 (OF2() =22 OF, [ Ax(s)ds
: 22)
([ ras) ama [ xas).

Substituting Eq. (17)-(21) into (15), ¥,(x,) has the new upper

bound as follows

Vi(x,) < 2 (t)(PA, + 4] P+ PBK + K"B" P + e PP)z(¢)
+ 2" () (PD,A,D] P)z(t)

+( ) :hx(s)ds)T(A[T T4+ A'ET A;'EIAI)( th(s)ds)
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=22 ()P4, +T) [ Ax(s)ds

+227 ()PD,A, DY Pz(1)

+x"(t—(-T + EIA'E, + 27 B D)x(t - h)

+ 2" (OT,z(¢) + 2" (1) PD,A, DY Pz(t) (23)
+z (DKTELEKz(f) + 2 ()K"W,Kz(t)

0 Tro o (1)

* J.’/_hx(s)ds !i* F+FTJ f_hx(s)ds

Y z(l‘) " 0 Y Z(t)
JLxtods {F JQ 2 g |

where Lemma 2 is utilized in obtaining the upper bound of
- f”_hxf(s)Qx(s)ds. If
~T +EIAJE, +267 B2 <0, 24

then, we have the following inequality

z(¢) z(1)
Vx)<| o | , 25)
Lh x(s)ds L . x($)ds

where

| P44 -T4 .

s<|  |F+F +ATA4 |+n F}Q”[O F'], (6
+ATETAE A,

and

I, = Pd, + AP+ PBK + K"B"P+ PD,(A, + A,)DI P
+PD,A,D] P+ PD,A,DI P+ E'A'E, + K" ETA]EK (27)
+&PP+K'W,K.

If £<0, thena positive scalar exists which satisfies
. 2
Vix) <=0 - (28)

Also, if the inequality (11) holds, then we can prove that a positive
scalar & which is less than one exists such that

29

[—5M hAITM}
<0
* M

according to matrix theory. From Lemma 1, if LMI (29) holds,
then the operator z(¢) is stable. According to Theorem 9.8.1 in

[4), we can conclude that if £ <0, and LMI (11) hold, then

system (6) is asymptotically stable. From (26), ¥ <0 can be
represented as

(30)

Mol - Ms3 - AABESE ==X M 13 2, X 6 & 2007.6

By Schur complements, the above inequality is equivalent to

z —PA A4 0
N [F +FT 4+ J r
ATEAJE 4,
* * _h—IQ
* * &
% * *
* * *
L * * 3
o1 1 281 ]
- hAlr - AIT - AIT - ﬁﬁ] A1T
0 0 0 0
-hQ 0 0 0 <0. (3D
* -w 0 0
* * -7 0
* * * &
Letting

X=P',G=T",R=hQ", Y =KX, L =RFR, (32)

and pre-and post-multiplying both sides of (31) by diag{X,R,
1,1,1,1,1} leadsto

z, -4, 4R 0
* (L +17+ J I
RATEAE AR
* * _R
%k * £ 3
* * *
* * *
* * *
hX X X 2Bx
- hRAIT - RAIT - RA1T - ﬁﬂl RAIT
0 0 0 0
R 0 0 0 <0, (3
* -w 0 0
* * -G 0
* * * g J
where

L, = A X + X4, + BY +Y"B" + D/(A, + A)D]
+DyAD; + DIAD] + XE[AT'EX +YTEIAJ'EY (34)
+el + YWY,
By Schur complements, (33) is equivalent to inequality (10). Also,
pre- and post-multiplying both sides of (24) by G leads to the
inequality (12). Therefore, system (1) under controller (4) is

asymptotically stable if (10)-(12) hold.
If inequality (10)~(12) hold, then

V(x,) <~(x"(OW,x(0) +u” (6 W,u(0)) < 0. (35

Integrating both sides of (35) from 0 to ¢ '+, We obtain
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2Pty + [ {7 ¥ (@) Ox(w)duds

+ J,[f th(S)Tx(S)ds — 2T (0)Pz(0)
) o . 36)
- [, 1, ¢" woswduds - [ ¢" (T 4()ds

<- jof T (OWx(t) + u” (OW,u())dt.

Since we already established the asymptotic stability of the
closed-loop system (7), when ¢, — o,

27 (t,)Pz(t,) >0, G7)
[ [ 5 (@x(wduds o, (39)
flh x" (5)Tx(s)ds — 0. (39)

Therefore, we obtain the upper bound of cost function (3) as

J<Z"OPzO)+ [, [ ¢ ()00 (w)duds

g0 (40)
+ [ (T(s)ds.

From Theorem 1, we construct a controller which makes the
closed-loop system (6) asymptotically stable by a solution set. The
following Theorem 2 presents the method of choosing a controller
which minimizes the upper bound of the cost function (3).
Theorem 2: Consider the system (6) with the cost function (3).
Foragiven 4> 0, if the following minimization problem

minf{a + Trace(M,) + Trace(M,)}

subject to
(i) inequalities (10) - (12), @1)
(ii) {“:‘ Z_T ()ﬂ <0, @2)
(iit) {_i\/[ fZﬂ <0, 43)
@) {* il : iv;} <0, (44)

has a solution X >0, R>0, G>0, M>0, M,>0, M, >0,
A, > 0@ =1,..,4), matrix Y and L with appropriate dimensions,
and positive scalar values « and ¢ , then the obtained controller
u(t)y =YX "'z(¢) is a guaranteed cost controller which minimizes
the upper bound of the cost function (3) and makes the closed-
loop system (6) stable for all admissible norm-bounded parameter
uncertainties and nonlinear perturbations. The guaranteed cost
J" is obtained as @ + Trace(M,) + Trace(M,).

Proof: If the LMIs (42), (43), (44) in Theorem 2 hold, then the
following inequality

a + Trace(M,) + Trace(M,) 45)
> z"(0)X ' 2(0) + Trace(N, (hR™IN ) + Trace(N"G™'N)

holds by applying Schur Complements to the LMIs (42), (43) and
(44) and adding each term. Since

P=Xx", (46)

J-i. LO¢T (1)Q(u)duds = Trace(N,N:Q)
= Trace(N,ON,) 47
=Trace(NTHR™'N,),

[ ¢ ©)Tpsrds = [ 451G 'p(s)ds
=Trace(NN'G™") (48)
=Trace(N'G™'N),

we obtain

2" (0)X '2(0) + Trace(NL (hR)N,)

+Trace(N'G™'N)
=" ©P0)+ [ [ ¢ )0p(u)duds

+ [ ©THs)ds.

(49)

From (40), (45), and (49), we can know that « + Trace(M,)
+Trace(M,) is the upper bound of the cost function (3).

Therefore, the controller u(f)=YX'z(t) constructed from
Theorem 2 is a guaranteed cost controller which minimizes the
upper bound value of the cost function (3) and o+
Trace(M,) + Trace(M,) is a guaranteed cost. This completes our

proof. |

Remark 2: Since the LMIs (10)-(14) in Theorem 1 can be
easily solved by various efficient convex algorithms. In this paper,
we utilize Matlab’s LMI control Toolbox [21] which implements
interior-point algorithms. These algorithms are significantly faster
than classical convex optimization algorithms [1].

Remark 3: In [27], the delayed feedback observer-based control
method was presented. However, two coupled LMI should be
solved to obtain the desired controller. Moreover, the system
performance had not considered in [27]. To the best of author’s
knowledge, delay-dependent observer-based guaranteed cost
control has not been fully investigated. In future works, we will
study the design problem for delay-dependent observer-based
control for uncertain time-delay system with considering system
performance by utilizing delayed feedback.

IV. Numerical Example
Example 1: Consider the uncertain time-delay system with
norm-bounded parameter uncertainty and nonlinear perturbations:

() =(A+ADx(t) + (4, + A4)x(t -1)

+(B+ABYu(t) + f(t,x(t),x(t - 1)) (50)
O.Se%
¢(S) = s |? se [_15 0]
_eZ

where system matrices are

{0 1 } {0 O} {0}
A= , A = ,B=| | 51
1 -2 0.1 0.1 1
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Table 1. The guaranteed cost and controller gain matrices with respect
to nonlinear uncertainties(Example 1).

Kol - s - AlagSs =24 M 13 &, M 6 & 2007.6

T 3 vAE EFel mE A vE E Al oF
(<A 2).

Table 3. The guaranteed cost and controller gain matrices with respect
to nonlinear uncertainties (Example 2).

Nonlinear Uncertainty | Cost, J~ Controller gain, Nonlinear Uncertainty | Cost, J Controller gain,
£=05=0 1.2244 [-10.5125 -4.3406] B=0,5,=0 2.8712 [-0.0825 -95.2545]

B =01,5=0 2.1935 [-13.4451 -5.3839] B =01 45=0 3.2101 [-0.0514 -1406.6]

B =0,5=01 2.8597 [-15.2916 -6.0329] £ =046 =01 3.3268 [-0.039-2147.4]

B, =01, 4,=0.1 3.4387 [-16.2086 -6.3034] £, =01, 4,=0.1 3.5057 [-0.0227 -3217.0]

E 2 B=p=097%F 4% Bl vadA] 1).
Table 2. Comparision of the obtained guaranteed cost for g, =
B, =0 (Example 1).

X 4 B=5=0U%% 4% H-& Hlu(dA 2).
Table 4. Comparision of the obtained guaranteed cost for £, =
£, = 0 (Example 2).

Method Cost, J' Method Cost, J'
Method of [2] 3.5073 Method of [28] 42
Method of [27] 1.3162 Our result 2.8712
Our result 1.2244

and parameter uncertainties are

0.1 0.1 0 0
D, = »D,=D, D, = >
0 0 0 0.1

(52)
1 0 0
E=|y | PE=BE= |
Let’s choose the weighting matrices
1 0
W'=0 1,WZ:I. (53)

Table 1 shows the results of cost and corresponding controller
gain matrices with respect to the nonlinear uncertainty bounds by
applying Theorem 1. And table 2 compares the obtained
guaranteed cost with recent results. From table 2, we can see the
proposed controller gives less upper bound of the cost function by
utilizing the proposed Lemma 2. If we increase the nonlinear
uncertainty bounds, the guaranteed cost and controller gain
become large, which means the stabilization condition becomes
conservative due to the nonlinear perturbations.

Example 2:

(1) = (A+ AdDx() + (A4 + A4)x(t — h)
+ Bu(t)+ f(t,x(t), x(t - h)) (54)

#(s) = {

s+l

eo },se[—h, 0]

where system matrices are

[o OJ [—2 —0.5] m
A= , 4 = ,B=} | (55)
0 1 g -1 1

and parameter uncertainties are

02 0
D, = 0 02 , D, =D,, (56)

10
E=ly (P E=E

Let’s choose the weighting matrices

w|' O w o (57)
1_0 1’ 27

1t is noted that the system is not delay-indepedently stabilizable.
For this system, we assume /= 0.37 which is the same value in
[28]. Table 3 and table 4 show the same items represented in
example 1. From table 3 and 4, we can see the proposed method
gives less guaranteed cost in spite of the consideration of
nonlinear perturbations. However, the obtained controller
becomes large as nonlinear perturbation bound increase.

V. Conclusion
In this paper, a delayed feedback guaranteed cost controller
design method for uncertain time-delay systems with norm-
bounded parameter uncertainties and nonlinear perturbations has
been proposed. An LMI optimization problem, which can be
solved effectively by optimization algorithms, is expressed in
terms of LMISs to design a controller with feedback of the current
and the past history of the state. This controller stabilizes the
closed-loop system and minimizes a better performance than other

results in spite of nonlinear perturbations.
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