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Discretization of Nonlinear Systems with Delayed Multi-Input
via Taylor Series and Scaling and Squaring Technique

Zhang Yuanliang, Kil To Chong*
Division of Electronics and Information Engineering Chonbuk National University,
Duckjin-Dong, Duckjin-Gu, Jeonju 561-756, Korea

An input time delay always exists in practical systems. Analysis of the delay phenomenon
in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding
discrete-time model for implementation via digital computers. In this paper a new scheme for
the discretization of nonlinear systems using Taylor series expansion and the zero-order hold
assumption is proposed. The mathematical structure of the new discretization method is an-
alyzed. On the basis of this structure the sampled—data representation of nonlinear systems with
time-delayed multi-input is presented. The delayed multi-input general equation has been
derived. In particular, the effect of the time-discretization method on key properties of nonlinear
control systems, such as equilibrium properties and asymptotic stability, is examined. Addi-
tionally, hybrid discretization schemes that result from a combination of the scaling and squar-
ing technique (SST) with the Taylor series expansion are also proposed, especially under
conditions of very low sampling rates. Practical issues associated with the selection of the
method’s parameters to meet CPU time and accuracy requirements, are examined as well. A
performance of the proposed method is evaluated using a nonlinear system with time delay :

maneuvering an automobile.
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1. Introduction

Time-delay systems (shortly, TDS) are also re-
ferred to as systems with aftereffect or dead-time,
hereditary systems, equations with a deviating ar-
gument or differential-difference equations. The
future of internet technology involves the devel-
oping and evolving of results in the interest of
control systems with time delay. The convergence
of communication and computation in control
systems and the complex behavior of the control
systems with non-negligible time-delays are the
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two main reasons for the special attention in the
time-delayed status. The digital controller using
the communication and the increased computa-
tion requirement in the system induces the time-
delay. In the embedded control systems, the effect
of the time-delay due to the communication and
the increased computation cannot be ignored. Al-
so, control systems with time-delays exhibit com-
plex behavior because of their infinite dimension-
ality. Even in the case of linear time-invariant
systems that have constant time-delays in the
input or states have infinite dimensionality if ex-
pressed in the continuous time domain. For this
reason, it is difficult to apply the controller design
technique developed during the last several years
for finite-dimensional systems to the systems with
any time-delays in the variables. Thus, control
system design methods that can assist the system
with time-delays are necessary.



1976 Zhang Yuanliang and Kil To Chong

Time delay is often encountered in various en-
gineering systems, such as chemical processes, hy-
draulic, and rolling mill systems and its existence
is frequently a source of instability. Many of these
models are also significantly nonlinear which mo-
tivates research in the control of nonlinear sys-
tems with time delay. A natural direction is to try
to extend the ideas and results of nonlinear non-
delay control to systems with delay. Such results
include the input-output linearization and de-
coupling, partial feedback linearization with de-
lay term domination, and extension of control
Lyapunov functions (CLF) to delay systems in
the form of conirol Lyapunov~Razumikhin func-
tions (CLRF). Jankovic (2003) established a ge-
neric sufficient condition for stabilization using
the domination redesign formula. Su and Huang
(1992) presented a delay-dependent stability con-
dition for the linear uncertain time-delay systems.
Wu (1996) derived some robust stability condi-
tions which lead to some bounds on the pertur-
bations so that the LQG optimal control system
can remain stable in the presence of delayed pe-
rturbations. In many applications magnetic levi-
tation systems are required to have a large oper-
ating range. Choi and Baek (2002) applied Time
Delay Control (TDC) to a single-axis magnetic
levitation system to solve this problem. Lee and
Kim (2003) proposed a high level CVT ratio
control algorithm to improve the engine perfor-
mance by considering the powertrain response
time delay. Cho and Park (2004) proposed a new
impedance controller for bilateral tele-operation
under a time delay.

Traditional numerical schemes for ordinary dif-
ferential equations, such as Runge-Kutta schemes,
usually fail to attain their asserted order wheén
applied to ordinary differential control equations
due to the measurability of the control functions.
Grune and Kloeden (2002) extend a systematic
method for the derivation of high order schemes
for affine controlled nonlinear systems to .a larger
class of systems in which the control variables are
allowed to appear nonlinearly in multiplicative
terms.

Hong and Wu (1994) derived sufficient condi-
tions for the zeros of the polynomial to be either

inside the unit disk in the complex plane or at
least one zero outside the unit disk by examining
the coefficients of a given polynomial in the linear
discrete system. Kang and Park (1999) experi-
mentally confirm the fundamental dynamic prop-
erties of an electro-dynamic structure. The dis-
cretization effects are examined for the conversion
of continuous properties such as mass, stiffness,
and surface charge into discrete quantities. In the
systems considered, the linearized characteristics
are well-matched with the nonlinear systems in
the sense that the linearized effects predominate
over the high-order nonlinear terms.

In the field of the discretization, for the origi-
nal continuous-time systems in the time free case
(Franklin et al,. 1998) the traditional numerical
techniques such as the Euler and Runge-Kutta
methods have been used to obtain the sampled-
data representations. However, these methods re-
quire a small sampling time interval. This oc-
curs because it is necessary to meet the desired
accuracy and because they cannot be applied to
the large sampling period case. However, due to
the physical and technical limitation slow sam-
pling is becoming inevitable. A time-discretiza-
tion method which expands the well-known time-
discretization of the linear time-delay system
(Franklin et al, 1998 ; Vaccaro, 1995) to non-
linear continuous~time control system with time-
delay (Kazantzis et al., 2003) can solve this
problem. This method is applied to the nonlinear
control systems with delayed multi-input (Park
et al., 2004) and the nonlinear control systems
with non-affine delayed input (Park et al., 2004) .
The effect of this approach on system-theoretic
properties of nonlinear systems, such as equili-
brium properties, relative order, stability, zero
dynamics and minimum-phase characteristics,
which all highlight the natural and transparent
way in which Taylor methods permeate the rele-
vant theoretical aspects, is also studied (Kazantzis
et al.,, 1997).

Nowadays, modern nonlinear control strategies
are usually implemented on a microcontroller or
digital signal processor. As a direct consequence,
the control algorithm has to work in discrete-
time. For such digital control algorithms, one of
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the following time discretization approaches is
typically used : time-discretization of a continu-
ous time control law designed on the basis of a
continuous time system ; and time-discretization
of a continuous time system resulting in a dis-
crete-time system and control law design in dis-
crete-time.

It is apparent that the second approach is an
attractive feature for dealing directly with the
issue of sampling. Indeed, the effect of sampling
on system-theoretic properties of the continu-
ous-time system is very important because they
are associated with the attainment of the design
objectives. It should be emphasized that in both
design approaches time discretization of either
the controller or the system model is necessary.
Furthermore, notice that in the controller design
for time-delay systems, the first approach is trou-
blesome because of the infinite-dimensional na-
ture of the underlying system dynamics. As a re-
sult the second approach becomes more desirable
and will be pursued in the present study.

This paper proposed the time discretization
method of the nonlinear control systems with
multiple time-delays in the control (Park et al.,
2004). The proposed discretization scheme ap-
plies the Taylor Series expansion according to the
mathematical structure developed for the delay-
free nonlinear system (Kazantzis and Kravaris,
1997 ; 1999) and delayed single-input nonlinear
system (Kazantzis et al., 2003) . The effect of sam-
pling on system-theoretic properties of nonlinear
systems with time-delayed multi-input, such as
equilibrium properties and stability, is examined.
Finally the well-known SST, which is widely used
for computing the matrix exponential (Higham,
2004), is expanded to the nonlinear case when the
sampling period is too large.

2. Nonlinear System
with Delayed Input

In the present study single-input nonlinear
continuous-time control systems are considered
with a state-space representation of the form
(Kazantzis et al., 2003):
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dx(t)
dt

=f(x(t)) +egx () ult—-D) (1)

where x& X C R" is the vector of states and X is
an open and connected set, ¥ E R is the input
variable and D is the system’s constant time-delay
(dead-time) that directly affects the input. It is
assumed that f (x), g(x) are real analytic vector
fields on X.

An equidistant grid on the time axis with mesh
T=tpe1—t: >0 is considered, where [ f, tet1) =
[£T, (k+1)T) is the sampling interval and T
is the sampling period. It is assumed that system
(1) is driven by an input that is piecewise con-
stant over the sampling interval, i.e. the zero-
order hold (ZOH) assumption holds true:

u(t) =u(bT)=u(k)=constant (2)
for kT <t<kT+ T. Furthermore, let:
D=qT+y (3)

where ¢={0, 1, 2, --} and, 0<y<T ie. the
time-delay D can be represented as an integer
multiple of the sampling period plus a fractional
part of T (Franklin et al., 1998 ; Vaccaro, 1995).
Based on the ZOH assumption and the above
notation one can deduce that the delayed input
variable attains the following two distinct values
within the sampling interval (Vaccaro, 1995):

wlkT—-gT-T)=ulk—q—1) if kT<t<ET +y

ul{t-D)= wlkT~qT)=ulk=0) ifRT+y<t<kT+T

(4)
Under the above preliminaries, the time-discreti-
zation of nonlinear systems with delay-free single
input and time-delay single-input will be dis-
cussed briefly.

2.1 Discretization of nonlinear system with
Delay-Free input
Initially, delay-free (D=0) nonlinear control
systems are considered with a state-space repre-
sentation of the form:

dx (t)
dt

=f(x(6)) +u(t) glx(t) (5)

Within the sampling interval and under the ZOH
assumption, the solution of (5) is expanded in a
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uniformly convergent Taylor series (Vydyasagar,
1978):

x(k+1)=d)r(x(k) u(k))

de

=% (k) +§1A“‘ (x(B), u<k>)ll!'

where x (%) is the value of the state vectorat time
t=t,=kT and A¥(x,
sively by :

AM(x, w)=f(x) +ug(x)

AT W (1) +ug ) ()

with /=1, 2,3, -~

u) are determined recur-

A[H—l]( )

Remark 1: In general A (x, %) is a /-th degree
polynomial in the input variable u (Kazantzis et
al., 2003):

A%, w)=al(x) + i (x )u+a”]( )y u?

+oo+ M (x) ®)

In view of the representation (8), the series ex-
pansion (6) can be rewritten as follows :

R (1) = 0r 2 (), w(h)
e+ 53 u w17l (1) T

1t should noted, that the series expansion {(6) can
also be expressed in an operator form. Indeed,
under the ZOH assumption, the new discretiza-
tion approach can be naturally formulated within
the context of Lie series theory for nonlinear
autonomous ODEs. The following definition is
deemed essential.

Definition 1 Given f, an analytic vector field
on R” and A, an analytic scalar field on K7, the
Lie derivative of % with respect to f is defined in
local coordinates as (Kazantzis et al., 2003):

oh
0%Xn

Lh(x)= f1+ - (10)
In light of Definition 1, the solution to the recur-
sive relation (7) may be represented in terms of

higher-order Lie derivatives as follows:

AW (x, uy=(Ls+uLg) x: an
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-, # denotes the 7-th
n n
component and Lf=§fi(x)£f, Lg=§gi(x>%

are Lie derivative operators. This allows for re-

where the subscript i=1, -

presenting the series expansion (6) as a uniformly
convergent Lie series for the ESDR (exact sam-
pled-data representation):

xi(k+1) =0y (x(k), u(k))
T (12)

=x:(k )+§(Lf+uLg> Wil cxewy, a1 71

=1

and similarly for the ASDR (approximate sam-
pled-data representation):

x:(k+1) =0 (x(k), ulk))
N t(13
=x;(k )+§1(Lf‘|‘uLg> il e, uk»’{, (13
with 7=1, -, #n.

2.2 Discretization of nonlinear system with
delayed single-input
The sampled-data representation of the non-
linear system with single delayed input can be
derived from Eq. (6), which provides the follow-
ing Eq. (14) (Kazantzis et al., 2003).

T4 =4 0T+ BA D), wlh=g-0)
if AT<T<kT+y

:x(kT+7)+gA’(x(kT+7>, ulk—g)) (Tl_!?/)l

if AT +y<t<kT+T

2(kT+T)

where x (%) and A are the same as above delay-
free case.

3. General equation derivation

3.1 Multi-input linear system with time de-
lay
General equation derivation of multi-input
linear system in state space form with time delay
can be represented as follows.

d;;(;) —Ax (D) +gbiui<t—0i)

=Ax(#) + by (t—Dy) + bara (£ — Do)
++bnun<t_Dn)

(15)
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where A, b;(i=1, -*-, n) are constant matrices of
appropriate dimensions. Under the ZOH assump-
tion interpreting (15) within any time interval
I=[ts, t,), where u;=constant (=1, -, n) re-
sults in :

% (ts) =exp(A(ty—ta)) 2 {to)

+[bexp(A(tb—r)) (Byur+ ot b+ + buttn) dt (16)

Assuming Di=q:+y:, I=14; t7)
where ¢; and 7; have the same meaning as the ¢
and y of part 2.

It is convenient to assume that.

Case 1. kT <t<kT+n
wm(t—D) =w(k—q—1)
w(t—Ds) =u2{lb—qa—1)

Un(t—Dn) =tn(k—qn—1)

(kT +n) =exp(An)x(kT)
+Lkmlexp(A(kT+n—T>) (b (k—q=1) (17)
+botelk—gi=1) ++ + buttnlk—qn)) dr

And the exponential matrix is defined through the
uniformly convergent power series :

121
A“t (18)

exp(Af) ——‘g

=xkT+n)

=z () +ZLA7 (ARD +Hhualk—a=1) (g

4

+ botn (k= e=1) -+ bt (k= g2— 1)) 1T
Case 2. kT + yn<t<kT+ tnn
w(t—D)=w(k—q)

Uns1 (= Dpst) =ttmir (B~ Gme1—1)

un(t—~Dn) =ttn(k—gn—1)

% (BT + Y1)

=x(kT+1n) +;ﬁ]1[A”1(Ax(kT+7m) +bun(k—q)
+ 0+ buttm (k= ) + bns1ttmsr (k=g —1)

—_ i
+"'+bnun(k_4n—1))1m%’7—m>v

(20)

1979
Case 3. kT + 7. <t<kT+T
Lﬁ(t“DQ =u1(k-(h)
2 (t—Ds) =us(k—qo)
un(t’—Dn>=un(k'—Qn>
x(kT+T)
=x (kT4 1)+ E LA (Ax (kT + 1) +buta (k=g o)
Y
‘|‘bzu2(k_(12> ++bnun(k_qn))] (TZ'V")

3.2 Multi-input nonlinear system with time
delay
The discretization scheme of nonlinear control
systems with delayed two-input and three-input
are presented in (Park and Chong, 2004).
The general multi-input nonlinear system in
state space form with time delay can be represent-
ed as follows.

dx (t)
dt

=f(x(#) +ggi(x(t)) wu:(t—D:)

=f(x(t)) +wm(t—D)a(x(t)) (22)
+ 1w (t—D2) & (x (1))
+o Fun(t) gu(x (¢ —Dn))

The general time-discretization equation of non-
linear system with multi-input time-delay can be
derived as follows :

i) kET<t<kT+n

(kT+n)

—ClhT) ST, b1, a0 23)

i) BT+ y:<t<kT+7y:1 where 1<[/<n—1

x(kT+ 7i+1)

:x(kT+7i)+gAl(x(kT) ), wlk—a), -, wilk—g,
) <7i+1‘7i)l (24)

ui+1(k“0i+1‘l>, Yy un(k_Qn—l Il
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i) kT +yn<t<kT+T
x(kT+T)
=t (kT 47+ A kT +1), k=g,

b, (=) T

(25)

Remark 2: It is important to observe, that the
ESDR of Egs. (23)~(25
linear analogue of the exact discretization scheme
available for linear systems Egs. (19) ~(21).

)} represents the non-

Theorem 1. Let x° be an equilibrium point of

the original nonlinear continuous-time system :
dx
(> =f(x) + w8 (x) +oraga(x) ++ + tngn (%),

belongs to the equ111br1um manifold : E°={x&
R* Ju.(i=1, 2, -, n)ER Fx) +ug(x) +
wa(x) +- + tungn (x) =0}, and ui=ul(i=1, 2,
-+, 1) be the correspondmg equilibrium value
) +ulg(x°) +uige

of the input variables: f(x
(x% +-+udgn(x% =0. The x° belongs to the
equilibrium manifold : E°={x€R"| Ju,(i=1,
2, -, WER: OR(x, w1, us, -+, un) =%} of the
ESDR: x(k+1)=0R(x(k), ta(x—q1—1), w

(k_QI), ey un<k—qn"l), un<k_Qn)> and
ASDR : x(k+1) =0 (x(k), mi(k—q1—1), w
(k—qv), -, un(k—qgn—1), us{k—qn)) obtain-

ed under the proposed Taylor-Lie discretization
method, with w;=u2(i=1, 2, ---, n) being the
corresponding equilibrium values of the input
QR (% 2, o, -, un) =x" and QPP

(2% o, s, -, un) =2°.

variables :

Proof : x° represents the equilibrium point and
wi(i=1,2, -
rium values of the input variables.

-, n) are the corresponding equilib-

= AM(x° ul, 4l -, ub)
=f (%% +ula(x") + e (x") + - +ungn(x") =0
= AU ol wg, -, un)

A, ud, i, -, un)
ox

AN, uf, 3, -+, up) =0

for all /€{1, 2, 3, -}

= 0, (x° uf, w8, -, up)

e
=x"+ ZAN G, wl, o, o, up) L=
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=2 Oy, (0,(2°, ud, 0, -, un), ud, 8, -, un) =x°
O3, ud, u, ud)
=01 Opper (O (0,0, ol 18, 0), o, 0, -+, uh)) ) =2
Similar arguments apply to the @%° map of the
ASDR. Therefore, x° belongs to the equilibrium
manifold E¢ of the ESDR and ASDR for any
finite truncation order V.

Theorem 1 essentially states that equilibrinm
properties are preserved under the proposed Tay-
lor discretization method.

Theorem 2. Assume that matrix M =[%+ ul

98 | 0 8gz+ g g0 98
ox " ox
that x° is a locally asymptotically stable equilib-

rium point of the delay-free system :

a’x()

}(xo) is Hurwitz, so

=f(x(8)) +&ax () wlt)
+a(x () ua(#) +-+ 2 (x (£)) un(t)
Then :

(1) x°is a locally asymptotically stable equi-
librium point of the ESDR.

(2) x°is a locally asymptotically stable equi-
librium point of the ASDR for sufficiently large
N, when T is fixed.

Proof : The following technical lemma is essential
and its proof can be found in Kazantzis and
Kravaris (1997).

Lemma 1.
In the single input status, let x° be an equilibrium

) e (1) +ex (D) ult-D)
that corresponds to u#=u". For any analytic
scalar field %2(x) and positive integer / the fol-
lowing equality holds:

point of

%[Lf-l-ul,g]‘h(x)l(xo,,m = [g§+ ogf]( 0

" . 00F
The z-th row of the matrix E

(x° #° can be

calculated as follows :

00T
5 )

l
[(Ls+uLg) ‘x:] |(x°,u°>%

N ok [ Of . 08 T
§3x<ax+ Oax>(x°> 7

N9
ox

-~

Il
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Due to Lemma 1.

In the case of multi-input under the assumption
of ZOH it is obvious that in any time interval we
denote that z;=constant (;=1, 2, -, #). So it is
correct and convenient to regard the multi-input
as a single input g*{(x) »*.

Therefore :
00% | o w0 = af *oigil o T
P8, w0 = Lrur )
e

for an ASDR of finite truncation order N, or

aaa;T (x°, u*®) =exp [(%in+u*o%i> (x%) Til

=exp(MT)
for the ESDR (N — o)

(1} Consider now the ESDR with time-delay
D. Notice that:

D
%(xos U ) G%T_ (¢Tn 7711( (¢71(x°, u*0)>...), u*o)
8;05“;"‘1-(¢h_1_7"4<“_(071(x0, u*“))...)’ u*o)
a?xy ( uk())
=exp(M(T—n))exp(M(rrrn-l))"'exP(MV*)
=exp(MT)

Since M is Hurwitz, it can be inferred that all the

007

eigenvalues of {(x° #*° have modulus less

than one, and hence x° is a locally asymptotically
stable equilibrium point of the ESDR.

(2) Consider now the ASDR. One obtains :

agx W)= 8(%,_ (Or (05, 06 %)) +), )
%ﬁfﬁ(@rn.l-m.,(-'-(@,, (W wt)-), 1)
'“%(x", u")
a(%’L(x U )@éxx‘_u(xu’ ) 335; 0
~-L§M"%}

=9 3G gpter o =10 (=) )

fi=bheg=0 =0 . ln ! ln-l Lo 11 !

Notice now that for a stable eigenvalue A; of M
(Re[A]<0),

N,D
G

the corresponding eigenvalue a; of

*0) .

s

> 3 zAim“m 1+t <T_y”>l( O l>ln 1“(71)11

n=
e A= AT

is stable only when | a:|<1.

Since for a fixed T and as N — o0, g;— exp
(A (yn—yn_1) )--exp(Aiy1) =exp (A T) one can al-
ways find a sufficiently large order of truncation
N such that: |a:|<1.

4. Scaling and Squaring Technique
(SST)

The Taylor series expansion method can be
applied to discretize the nonlinear systems with
delayed input and provide the desired accurate
result. In the case of a small sampling period, a
small Taylor order NN can satisfy the accuracy
requirement. However, when the sampling in-
terval T is large the order NN of the Taylor
method should also be large, in order for the
necessary accuracy to be achieved. This is mathe-
matically reflected upon the asymptotic behavior

n
(Nil) Olfyls ]l\/'—> oo, When T is consi-

derably large R might become extremely

large due to the finite-precision arithmetic before
it becomes small at higher powers, where conver-
gence guarantees it. In the case of linear system
this phenomenon occurs when calculating e’

and /Ore”a’t, which causes overflow of the com-
puter number representation.

The SST, which is also referred to as extra-
polation to the limit technique in most numerical
analysis literature, can be applied to solve this
kind of problem. This technique is popularly used
to calculate the exponential matrix exp(AT) for
large sampling periods. By applying SST one can
subdivide the sampling interval 7 into two or
more subintervals of equal length. Actually an
appropriate positive integer # can be chosen so
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that 7/2™ is small enough to calculate the ex-
ponential matrix. In this case the sampling period
T is subdivided into 2™ equally spaced subin-
tervals of length 7°/2™ and the exponential matrix
is calculated for a short interval 7°/2™. Finally,
the computation of exp(AT) is performed by
squaring the matrix exp(AT/2™) m times :

T 2\ .\ 2

antan (s (A L))V
By applying the Taylor series expansion method
the popular SST can be simply extended to the
nonlinear case. After conducting some analogue
one can use nonlinear operators and powers of
operators to substitute matrices and matrix pro-
ducts. In detail the key idea for the nonlinear
analogue of the SST remains the same as linear
case.

In the nonlinear case when T is large enough
one can divide the interval [ £, 1) to 2™ equally
spaced subintervals and use a small Taylor ex-
pansion order N with.a time step T'/2" for the 2"
intermediate subintervals to substitute the larger
order N’ used in the single-step Taylor method
case. That is to assume now that Q(N’, T): R"
— R”" is the operator that corresponds to the
Taylor expansion of order N’ with a time step
T, and that when it acts on x(.7T) the outcome
is :

x(RT+T)=Q(N', T)x(kT) (27)

where
QN T) () =1+ AV (R), u(®) T (28)

Using operator notation the resulting discrete-
time system may now be written as follows :

s+ =[e(N L) 21 @9)
The above ASDR may be viewed as the direct
result of the combination of Taylor’s method and
the SST.

The choice of the parameters of N and m is
important for implementation. Different values
of N and m can reflect different requirements of

the discretization performance. In this paper we
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use the following two factors: i) simplicity and
computing time ; and ii) numerical convergence
and accuracy requirements; to select these two
kinds of parameters. In fact the criterion of se-
lecting an appropriate m is to compare the mag-
nitude of the sampling period 7 with the fastest
time constant 1/o of the original continuous-
time system. If 7" is small compared to 2/, that
is the sampling period is so small that only a
single step Taylor method with a small Taylor
order N can be applied to achieve superior re-
sults, one can set m=0. When T is larger than
the fastest time constant 1/, one should apply
the SST to reduce the Taylor order N. The
sampling interval is therefore subdivided into
2™ subintervals, and a low-order N single step
Taylor discretization method is applied for each
subinterval. Consequently, it requires that the
following inequality should hold :

T 2
—<= 30

PR ¢ (30)
Since the requirements for numerical convergence
and stability are also met, the positive integer m
is now selected to be:

m=max<[logz<—fg>}+l, 0> (31)

where §<2/p is arbitrarily chosen and [x]
denotes the integer part of the number x. It is
evident, that smaller values of the arbitrarily
selected number & would result to more stringent
bounds on T/2™

The SST can also be applied to the nonlinear
control systems with delayed multi-input. In this
case we do not consider the single sampling in-
terval T but the subintervals of 71, 72— n, -,
T —yx in one sampling period. The method ap-
plied to choose m can also be used by changing
T of that preceding equality into these subinter-
vals of 71, 72— 71, T — 7n.

That is, m7l=max<[logz<%>}+l, O>,
m72_71=max<|:logz< 7'2;7'1 >:|+1, 0>, N

s T3 1)
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5. Computer Simulations

A simplified model of maneuvering an autom-
obile (Nijmeijer and Schaft, 1990) is considered
in the computer simulations. Exact solutions for
the systems are required in order to validate the
proposed discretization method of nonlinear sys-
tems with the delayed multi-input. In this paper
the continuous Matlab ODE solver is used as
an exact solution. In the simulation the discrete
values obtained using the Taylor series expansion
method are compared with the values obtained
through the continuous Matlab ODE solver at the
corresponding sampled period. The Matlab ODE
solver is accurate enough to be used as the exact
solution in (Kazantzis et al., 2003). The partial
derivative terms involved in the Taylor series
expansion are determined recursively. For all the
case studies considered these partial derivative
terms are calculated using Maple.

The front axle of a simplified automobile man-
euvering system is shown in Fig. 1. The middle
of the axles linking the front wheels has position
(x1, x2) €ER? while the rotation of this axis is
given by the angle x;. The states x1, Xz related
with rolling are directly controlled by inputand
the state xs related with rotation is directly con-
trolled by 2, thus the governing nonlinear dif-
ferential equation can be obtained as follows ;

J x| [sinxs 0
7 | %2 [F | cos % w(t—D) +|0|wl{t—Dy) (32)
X3 0 l

The eigenvalues of the linear approximation of
this system are small, thus 2/ becomes large. At
first we choose a small sampling period and small
time delay to verify the discretization method
proposed in this paper. The inputs of #: and
are assumed to be step functions respectively
whose magnitudes are #;=1 and 2;=2.5.

The initial conditions are x1(0) =0m, x2(0) =
Om, x3(0) =30° and the sampling period (7T) is
0.002 sec. The inputs delays are 0.0015 sec for
and 0.0036 sec for #,. Thus we can use a single-
step Taylor method and choose N=3. As shown
in Fig. 1, the numerical differences between the
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Matlab ODE solver and the proposed method
for state x; range from 0.019X107% to —3.296 X
1078, and those values for state x» range from
—4.636 X107 to —5.823 X107 The differences
between the responses of the Taylor method and
the Matlab solver are presented in Fig. 2.
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Fig. 2 State error responses of the simplified autom-
obile for the case 1

Another test with 7°=0.5 sec, D;=0.3 sec and
D»=1.2 sec was evaluated. It was conducted with
a single-step Taylor method with N=1, 3, 7. The
numerical differences between the Matlab ODE
solver and the proposed method for state x; and
x2 are shown in Table 2. From Table 2 it is
evident that if the sampling period T is enlarg-
ed, one must use larger /N in order to achieve
the desired accuracy. From the above definition
we know that g1=0, 71=0.3, g2=2, 7:=0.2. As-
suming [=m,,, M=My,—y, and =mir-,, are the
scaling and squaring coefficients # of the inter-

vals of [T, kT +7y2), [kT+ 7, kT+7) and
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Table 1 The response of system in the simplest case

:i::: Matlab (x1) |Taylor (1) |Matlab (x2) | Taylor (xz)
100 0.1363 0.1363 0.1415 0.1415
200 0.3250 0.3250 0.2012 0.2012
300 0.5192 0.5192 0.1631 0.1631
400 0.6714 0.6714 0.0365 0.0365
500 0.7442 0.7442 —0.1475 | —0.1475
600 0.7200 0.7200 —0.3439 | —0.3439
700 0.6045 0.6045 —-0.5047 | —0.5047
800 0.4261 0.4261 —0.5904 | —0.5904
900 0.2284 0.2284 —0.5801 | —0.5801
1000 0.0599 0.0599 —0.4762 | —0.4762

Table 2 The response of the sampling period (7=

Zhang Yuanliang and Kil To Chong

Table 3 The response of the sampling period (7=
0.5s) <using scaling and squaring method)

0.5s)

Time Taylor {x1) |Taylor (x1) {Taylor (x
step Matlab (x) (}:N= l() g ()}V=3() ) (yN=7() )
4 1.1224 1.1088 1.1228 1.1224
8 0.6667 0.6283 0.6673 0.6666
12 0.3968 0.4515 0.3956 0.3968
16 0.6995 0.8317 0.6969 0.6994
20 1.1410 1.2242 1.1396 1.1410
24 1.0890 1.0666 1.0894 1.0889
28 0.6180 0.5848 0.6183 0.6177
32 0.4028 " 0.4689 0.4012 0.4026
36 0.7519 0.8851 0.7491 0.7517
40 1.1650 1.2370 1.1636 1.1649
:i:,e Matlab (x) Ta(};;; l(;cz) Ta();i;; 3(;62) Ta(;;{;); 7(;62)
4 0.8112 0.9600 0.8084 0.8112
8 0.9578 1.0023 0.9570 0.9578
12 0.5623 0.5535 0.5624 0.5623
16 0.1914 0.2566 0.1900 0.1914
20 0.3764 0.5370 0.3732 0.3764
24 0.8523 0.9929 0.8497 0.8523
28 0.9373 0.9712 0.9367 0.9373
32 0.5096 0.5029 0.5096 0.5096
36 0.1820 0.2590 0.1803 0.1819
40 0.4238 0.5889 0.4205 0.4238

(T +n, kT+T). We choose N=3 and /=1,
m=0, n=1; /=4, m=3, n=4 and /=8, m=6,

e Mt () [F9r (50 Taser b [Foner b
4 1.1224 1.1225 1.1224 1.1224
8 0.6667 0.6668 0.6666 0.6666
12 0.3968 0.3966 0.3968 0.3968
16 0.6995 0.6991 0.6994 0.6995
20 1.1410 1.1408 1.1410 1.1410
24 1.0890 1.0890 1.0889 1.0889
28 0.6180 0.6178 0.6177 0.6177
32 0.4028 0.4024 0.4026 0.4026
36 0.7519 0.7513 0.7517 0.7517
40 1.1650 1.1647 1.1649 1.1649

et () |10 b [Teor U Feoor
4 0.8112 0.8107 0.8112 0.8112
8 0.9578 0.9577 0.9578 0.9578
12 0.5623 0.5623 0.5623 0.5623
16 0.1914 0.1912 0.1914 0.1913
20 0.3764 0.3759 0.3764 0.3764
24 0.8523 0.8519 0.8523 0.8523
28 0.9373 0.9372 0.9373 0.9373
32 0.5096 0.5096 0.5096 0.5095
36 0.1820 0.1817 0.1819 0.1819
40 0.4238 0.4233 0.4238 0.4238

n=38 respectively. The numerical differences be-
tween the Matlab ODE solver and the proposed
method for state x; and x» are shown in Table 3.
In the case of /=1, m=0, n=1 the numerical
differences between the Matlab ODE solver and
the proposed method for state x; range from
—1.277%X10™* to 5.967X107* and those for state
x» range from —0.231X107* to 5.250X107*; in
the case of /=4, m=3, n=4 the numerical dif-
ferences between the Matlab ODE solver and
the proposed method for x; staterange from
—0.330 X107 to 2.529X 107 and those for state
x range from —4.040 X 1075 to 5.067X107°; and
in the case of /=8, m=6, n=38 the numerical
differences between the Matlab ODE solver and
the proposed method for state x: range from
—0.411X107* to 2.767 X 107* and those for state
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Table 4 The computing time data for various (I, m, n, N) (T=0.5s)

Extrapolation to the limit parameters (I, m, n) Order of the Taylor method N | computing time (s)
(1,0, 1) 3 7.18
(4,3,4) 3 21.21
(8,6,8) 3 386.85
Single step Taylor method 7 7.56

Table 5 The computing time data for various (Z, m, %, N) (T=0.5s)

Extrapolation to the limit parameters (/, m, m) Order of the Taylor method N | computing time (s)
(0, 0, 0) 25 8.31
(1,0, 1) 10 4.89
(2, 1, 2) 7 8.14
(3,2,3) 4 10.24
(4,3, 4 3 16.27
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Fig. 3 State error responses of the simplified autom-
obile for the case 2

%2 range from —5.671 X107° to 5.490X 1075, The
differences in the responses of the Taylor method
and the Matlab solver are shown in Fig. 3. The
computing time for these three cases and single
step Taylor method are shown in Table 4. It is
obvious that the results of (N=3, /=1, m=0,
n=1) case are adequate enough. Because the
sampling period is not very large the computing
time between single step Taylor method and
Taylor method with SST does not present a sig-
nificant difference. In the following case when
the sampling time and time delay is larger the
advantage of using SST is more obvious. From

these data we can conclude that SST is good for
the nonlinear case and after using this technique
one can use only a small N to ensure the desired
accurate results, which is more apparent in the
case where the sampling interval T is very large.
It would be prudent to choose the Extrapolation
to the limit parameters (/, m, »#). When some
small parameters (/, m, %) can satisfy the desired
accuracy it is not useful to choose larger ones
because it will aggravate the computing task sig-
nificantly. Then we continue to enlarge the sam-
pling interval. We can get a series of computing
times as the Extrapolation to the limit parame-
ters (I, m, m) change, which are shown in the
Table 5 (T =5, Di1=2, D:=8). From Table 5 we
can conclude that in the case where the sampling
period T is large enough it is more efficient to
use the SST instead of single step Taylor-Lie
method. When (7°=20, D;=12, D,=28) the
computing time is calculated by Extrapolation
to the limit parameters (/, m, #) and change is
shown in Table 6. The differences in the responses
the Taylor method and the Matlab solver be-
tween the case of single step Taylor method (N=
160) and the case of using the SST (N=70, /=
1, m=0, n=1) and (N=20, /=2, m=1, n=2)
are shown in Fig. 4. As the sampling period be-
comes larger and larger we have to enlérge N to
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Table 6 The computing time data for various (/, m, n, N) (T=20s)

Extrapolation to the limit parameters (/, m, n) Order of the Taylor method N | computing time (s)
(0, 0, 0) 160 " 156.15
(1,0, 1) 70 88.28
(2,1, 2) 20 71.04
o ‘absoime;meenoraof;l;r;;iﬂ‘. systems with time-delayed multi-input, such as
%mr T e selng ané squavg o equilibrium properties and stability is examined.
T N il X M N The well-known SST is expanded to the non-
§ ‘;z: — /,// linear case when the sampling period is too large.
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Fig. 4 State error responses of the simplified autom-
obile for the case 3

satisfy the desired accuracy which will aggravate
the computing pressure highly if we do not use
the SST. When T is large enough, then AT/ ]!
might become extremely large (due to the finite-
precision arithmetic) before it becomes small at
higher powers, where convergence takes over.
Consequently, in this case when the sampling
time and delay time are very large we can not
obtain accurate results using only the single-step
Taylor method, especially in the case of the sys-
tem whose fastest time constant is small. This
makes it very difficult to control the system and
ensure its stability. The SST can overcome this
problem.

6. Conclusions

A new approach for discrete-time represent-
ation of nonlinear control systems with delayed
multi-input in control is proposed. This approach
is based on the ZOH assumption and the Taylor-
series expansion which is obtained as a solution
of a continuous-time system. The effect of sam-
pling on ’system—theoretic properties of nonlinear
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