• 제목/요약/키워드: nonlinear iteration method

검색결과 225건 처리시간 0.024초

A HYBRID METHOD FOR NCP WITH $P_0$ FUNCTIONS

  • Zhou, Qian;Ou, Yi-Gui
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.653-668
    • /
    • 2011
  • This paper presents a new hybrid method for solving nonlinear complementarity problems with $P_0$-functions. It can be regarded as a combination of smoothing trust region method with ODE-based method and line search technique. A feature of the proposed method is that at each iteration, a linear system is only solved once to obtain a trial step, thus avoiding solving a trust region subproblem. Another is that when a trial step is not accepted, the method does not resolve the linear system but generates an iterative point whose step-length is defined by a line search. Under some conditions, the method is proven to be globally and superlinearly convergent. Preliminary numerical results indicate that the proposed method is promising.

Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems

  • Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.657-661
    • /
    • 2017
  • In this paper, it has been tried to propose a new semi analytical approach for solving nonlinear vibration of conservative systems. Hamiltonian approach is presented and applied to high nonlinear vibration systems. Hamiltonian approach leads us to high accurate solution using only one iteration. The method doesn't need any small perturbation and sufficiently accurate to both linear and nonlinear problems in engineering. The results are compared with numerical solution using Runge-Kutta-algorithm. The procedure of numerical solution are presented in detail. Hamiltonian approach could be simply apply to other powerfully non-natural oscillations and it could be found widely feasible in engineering and science.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

NEW HOMOTOPY PERTURBATION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Kim, Kyoum Sun;Lim, Hyo Jin
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.981-992
    • /
    • 2012
  • Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and analytical methods have been developed to solving such equations. We introduce the NHPM for solving nonlinear integro-differential equations. Several examples for solving integro-differential equations are presented to illustrate the efficiency of the proposed NHPM.

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS FOR NONLINEAR EQUATIONS

  • Sen, Syamal K.;Agarwal, Ravi P.;Khattri, Sanjay K.
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.395-411
    • /
    • 2012
  • Several methods with order higher than that of Newton methods which are of order 2 have been reported in literature for solving nonlinear equations. The focus of most of these methods was to economize on/minimize the number of function evaluations per iterations. We have demonstrated here that there are several computational pit-falls, such as the violation of fixed-point theorem, that one could encounter while using these methods. Further it was also shown that the overall computational complexity could be more in these high-order methods than that in the second-order Newton method.

비선형 이론을 이용한 케이블 네트의 형태안정 (A shape finding of cable net by nonlinear theory)

  • 황보석;서삼열;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.59-64
    • /
    • 1990
  • The cable structures undergo large deformation because of its highly flexibility. Therefore, we must take account of its geometric nonlinearity before analysis and find the equiribrated shape of cable structures. To solve these problems, a numerical procedures included nonlinear near theory which is applicable to general cable net, flexible transmission lines and suspended cable roofs, are presented in this paper. Now, this procedures are devided two parts : the one is to obtain the equibrated shape and stress of the cable structures applied uniform load by flexibility iteration method, the other is to analysis the equibrated structures subjected to nodal external forces by nonlinear finite element mothed. Its accuracy and efficiency are found to be comparable to some of other method and, in some aspect, it is mere applicable to cable structures.

  • PDF

조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구 (A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads)

  • 한상을;이갑수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF