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Abstract — Impedance imaging for binary mixwre is a kind of nonlinear inverse problem, which is usually
solved iteratively by the Newton-Raphson method. Then. the ill-posedness of Hessian matrix often requires
the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquardt regular-

ization method is introduced for the binary-mixture system with various resistivity contrasts {1 :2~1: 1000).
Several mixture distributions are tested and the results show that the Newton-Raphson iteration combined

with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

1. Introduction

The binary-mixture system can be encountered in
many engineering applications like heat exchangers, oil
or natural gas pumping system and chemical process-
ing. Because the heterogencous mixture distribution
affects the safety, control, operation and optimization
of process, it is important to monitor the mixture pro-
cess. In this study, the Electrical Impedance Tomog-
raphy (EIT) technique recently developed for medical
purposes is employed to visualize the mixture distri-
bution without disturbing the mixture field"'. It should
be noted that the EIT has good time resolution, which
is essential for monitoring the mixture distribution under
rapid transient.

In EIT technology, different current patterns are ap-
plied to the mixture system through the boundary elec-
trodes and the corresponding voltages are measured.
Based on the current-voltage relation, the internal im-
pedance distribution, that is the mixture distribution,
is reconstructed. The numerical algorithm used to
convert the boundary measurement data to the inter-
nal impedance distribution consists of iteratively solv-
ing the forward problem and updating the impedance
distribution as determined by the procedure of the
EIT. In the forward stage of the EIT the boundary
voltages is calculated with using assumed impedance
distribution, while in the inverse stage the impedance
distribution is reconstructed with boundary voltage meas-
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urements.

Since the EIT reconstruction problem is a nonlinear
ill-posed inverse problem. various regularization meth-
ods have been proposed to weaken the ill-posedness
and to obtain stable solution. The most often-used
regularization methods in EIT for medical imaging
are the Tikhonov regularization and the subspace reg-
ularization methods™.

The present study adopts the Levenberg-Marquardt
regularization, a variant of the Tikhonov regulariza-
tion, to moderate the ill-posedness of the impedance
imaging problem for the binary-mixture system. Espe-
cially, we consider the effect of the resistivity contrast
between binary mixtures on the performance of the
image reconstruction. In fact, most of previous studies
on the regularization methods were carried out for
relatively small impedance contrast, mainly up to sev-
eral tens'. This study aims to present the possibility
of the EIT for imaging mixture distribution and to in-
vestigate the applicability of the Levenberg-Marquardt
method, one of most common regularization methods,
10 various mixtures with various impedance contrasts.

2. Mathematical Model of Impedance
Imaging

The schematic diagram of the EIT system is given
in Fig. 1. Mathematically, the EIT is composed of the
forward problem to obtain the voltage distribution sub-
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Fig. 1. Schematic diagram of EIT system.

jected to assumed impedance distribution and the in-
verse problem to reconstruct the impedance distribu-
tion under the measured boundary voltages. The for-
ward and inverse problems are discussed as below.

When the impedance distribution p(X, y) and
boundary current I, through the ’th electrode e, are
given, the electrical potential distribution u within the
problem domain £ with boundary dQ is governed by
the following Laplace equation and the Neuman type
boundary conditions:

V(bl.w)zo, in Q $))
Jli‘ldszl,, I=1,2, .., L 2)
clpE)n
and
jla_udszo, 3)
on

aQ
where n is the outward normal unit vector. In addi-
tion, the following two condtions for the injected curent
and boundary voltages are needed to ensure the uni-
quness of the solution:

31=0, )

SU=0. )

U, denotes the voltages on e,
Since the above equation cant be solved analyti-
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Fig. 2. Finite element meshes.

cally for the arbitrary impedance distribution, the num-
erical method such as finite element method (FEM)
should be employed to obtain the solutions. This work
adopts the FEM and the grids shown in Fig. 2 are
used. Due to the characteristics of inverse problems, it
is recommended that the mesh structure for the image
reconstruction process should be different from that
for the artificial synthesis of resulting voltages in the
numerical experiments. We used finer mesh structures
for the artificial boundary voltages.

In most of EIT problems, the impedance within the
element is assumed to be constant and the above dif-
ferential equation is approximated by the system of
algebraic equations in the context of the finite ele-
ment method. The details of the finite element formu-
lation and the solution procedure are given in else-
where, e.g. Refs.”™,

The inverse problem of the EIT maps the boundary
voltages from real or artificial experiments to imped-
ance distribution. The objective function may be cho-
sen to minimize the squared error,

B(p)=5[V-UE)I'TV-U(p)] ©)

where V is the vector of measured voltage at the
electrodes placed along the boundary and U(p) is the
calculated boundary voltage vector that must be
matched to V.

To find p which minimize the above object func-
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tion, its derivarivative is set to zero as:
D'(py=[U7[V-Ul=0 7

where [U'[=dU/dp, is the Jacobian matrix. For the
solution of the above Eq. (7) we use the Newton-
Raphson linearization about a resistivity vector p* at
the k-th iteration as

q)!(plwl)=(D|(pk)+(bl(pl\)(l)wl_pk)=0. (8)
The term @" is called the Hessian matrix, expressed
as

O"=[UTU-[U"T{I®[V-Ul} &)

where ® is the Kronecker matrix product and I stands
for the identity matrix. Since U" is difficult to calcu-
late accurately and relatively small, the second term

in the above equation is usually omitted". Therefore,
the Hessian matrix is modified as
(D.|=[U|]TU|=JTJ (10)

where J is the Jacobian matrix. Finally, the iterative
equation for updating the resistivity vector based on
the above object function is derived as

pH'=p" + T V-U(pH)]. (o

The Hessian matrix is known to be ill-conditioned.
The ill-conditioning degrades the performance of image
reconstruction algorithm. To overcome this ill-posed-
ness, the regularization should be introduced. In stan-
dard Tikhonov regularization method” the regularization
matrix is a diagonal weighting for J'J and the equa-

k+1_pk iS

tion for the increment Ap‘=p
Ap'=(I"T+a diag(R™R))" (J'(V=U(p"))]. (12)

where o and R are regularization parameter and matrix,
respectively. If o=0. of course, the regularization method
turns into the conventional Newton-Raphson method.
The term including the regularization matrix can be
thought to represent an approximation for the second
term in the Hessian matrix Eq. (9). In the Levenberg-
Marquardt regularization, the regularized term is set
to R'R=[".

There are many data collecting methods such as
neighboring method, cross method, opposite method,
multireference method and adaptive method. The char-
acteristics of the methods are summarized in Webster’s

monograph”. Among these, the adaptive method, where
desired current distribution can be obtained by inject-
ing current through all the electrode simultaneously, is
known to be the best method. In this sutdy, we inject
trigonometric current patterns into 32 electrodes simul-
taneously as follows:

cos(kl) 1=1,2,--.32,k=1,2,---,16
sin(kl) 1=1,2,-,32,k=1,2,---,15

L= (13)

where {=2m/32.
3. Numerical Experiments and Discussions

The resolution of the EIT system depends on the
various variables, such as impedance contrast, mixture
distribution and object size. Therefore, to verify the
appropriateness of the proposed EIT algorithm and to
illustrate the effect of the impedance contrast on the
reconstructed image, a series of simulation is con-
ducted for several numerical examples.

In the present study, the root-mean-squared relative
error

g= |UZV)U-V) (14)
V'V

is used as the convergence criterion for the inverse
problem. If € is less than predetermined small value,
convergence is assumed and the reconstruction algo-
rithm is stopped. In this study, 107 is chosen as a stop-
ping criterion. Our experience shows that the quality of
reconstructed image does not improve after several iter-
ation steps, so maximum iteration number is set to 10.

To verify the appropriateness of the EIT to monitor
binary mixtures and to investigate the effect of the
resistivity contrast, we consider an artificial resistivity
distribution with various resistivity contrasts under the
synthetic boundary volatages obtained by the forward
solver described earlier. Numerical results are given in
Fig. 3. Figure 3(a) is the original mixture distribution
to be reconstructed. The others, Fig. 3(b)-(e), are the
reconstructed images for the above distribution with
four resistivity ratios of dispersed phase to continuous
phase; 1:2, 1:10, 1:100 and 1:1000. It should be
noted that in the application of EIT to medical imag-
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Fig. 3. Reconstructed image of binary mixture for various resistivity contrasts.

ing the resistivity contrast is usually less than 1: 10"
As the contrast increases, the images reconstructed by
EIT are expected to become poorer because higher
contrast tends to enhance the ill-posedness of the
Hessian matrix. As can be seen in Fig. 4 for the
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binary mixture with resistivity contrast of 2, the EIT
algorithm developed in this study can reach the con-
vergence after just 2 iterations and it can predict the
location of the dispersed phase. It should be noted
that the predicted impedance values are fairly close to
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Fig. 4. Relative errors.

the original ones. For contrast of 10, the number of
iterations required for the convergence criterion increases
to 4. Also, the present algorithm reconstructs a good
image and predicts the impedance values quite well.
For binary mixtures with resistivity contrasts of 100
and 1000, Fig. 3(d) and 3(e) show that the algorithm
still gives good images although more iterations are
required. Then, the impedance values are hardly pre-
dicted. In view of Fig. 3(c-e), the numerical experi-
ments consistently show that the predicted impedance
contrasts are about [0. Nevertheless, the present EIT
algorithm employing Levenberg-Marquardt regulariza-
tion can reproduce the original phase distribution
quite reasonably. The trend of relative errors during
the iteration shown in Fig. 4 indicates that within 3~4
iterations the relative errors fall down below 0.01 and
then decrease gradually.

Now, we consider the effect of the regularization
parameter on the image reconstruction. The regular-
ization parameters stated in Fig. 3 are chosen after
simulations with o=10", 107, ..., 0.1. For the first 3
cases 0=10"" gives the best results, while for the last one
with the highest contrast o=10"" fails to give a converged
result and o=10" is selected as the optimized one.

4. Conclusions

The electrical impedance-imaging algorithm is applied

to for the visualization of binary mixture system. This
EIT technique that has been proposed for the medical
application has some obvious advantages like non-
intrusive character and rapid response, which are use-
ful for monitoring the behavior of the mixture. How-
ever, the inverse problem in the EIT procedure is
highly nonlinear and it is required to introduce the re-
gularization method. For the reproduction of the mix-
ture distribution, in the present work, we developed
an EIT algorithm employing the Levenberg-Mar-
quardt regularization method. Also, binary mixtures
with various impedance contrasts ranging from 1:2 to
1:1000 are considered in the numerical experiments.
As the resistivity contrast increases more iterations
are needed to obtain converged results. For the con-
trast range considered in this study, the numerical
results show that the present EIT model with the reg-
ularization parameter 0:=10"~10" can reconstruct the
images of binary mixtures quite reasonably.
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