
J. Appl. Math. & Informatics Vol. 30(2012), No. 3 - 4, pp. 395 - 411
Website: http://www.kcam.biz

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS

FOR NONLINEAR EQUATIONS

SYAMAL K. SEN, RAVI P. AGARWAL∗ AND SANJAY K. KHATTRI

Abstract. Several methods with order higher than that of Newton meth-
ods which are of order 2 have been reported in literature for solving non-

linear equations. The focus of most of these methods was to economize
on/minimize the number of function evaluations per iterations. We have
demonstrated here that there are several computational pit-falls, such as
the violation of fixed-point theorem, that one could encounter while using

these methods. Further it was also shown that the overall computational
complexity could be more in these high-order methods than that in the
second-order Newton method.

AMS Mathematics Subject Classification : 65H04, 65H05, 41A25.
Key words and phrases : Convergence order, Fixed-point iteration, Newton

method, nonlinear equations, optimal iterative methods.

1. Introduction

Many problems in science and engineering require solving the nonlinear equa-
tion

f(x) = 0, (1)

[1-13]. Some of the best known and probably the most used methods for solving
the preceding equation are the Newton methods. The classical Newton method
(NM) is as follows, where x0 is an initial approximation (supplied) and k is a
positive integer, say 4,

xi+1 = xi −
f(xi)

f ′(xi)
, i = 0, 1, 2, . . . , till

∥xi+1 − xi∥
∥xi+1∥

≤ 0.5× 10−k and |f ′(xi)| ̸= 0
(2)

assuming that the iterates xi converge. The Newton method converges quadrat-
ically [1-13]. There exists many modifications of the Newton method, which

Received April 28, 2011. Revised June 29, 2011. Accepted September 2, 2011. ∗Corresponding

author.

c⃝ 2012 Korean SIGCAM and KSCAM.
395

396 S. K. Sen, R. P. Agarwal and S. K. Khattri

improve the convergence rate [1-21 and references therein]. Here we consider
two iterative schemes one fourth order and the other eighth order that are op-
timal according to Kung-Traub conjecture which states that an optimal iterative
method based on n + 1 function evaluations could achieve a convergence order
of 2n. We demonstrate through numerical examples that both the schemes have
the following computational drawbacks.

(i) Both these iteration schemes might not remain fixed-point (unlike Newton
methods).

(ii) They could encounter division by zero or 0/0 form even for a distinct zero
of a function (unlike Newton methods).

(iii) Computational complexity could be significantly more in these higher order
schemes if the initial approximation is far away from the true zero (unlike
Newton methods). Or, in other words, the high-order schemes could be
more expensive computationally.

(iv) Number of function-evaluations per iteration is more in these high-order
schemes (order ≥ 4) than that in Newton methods.

(v) Total number of function-evaluations for a specified initial approximation
could be significantly more in these high order methods than in Newton
methods.

Roughly speaking, if the order of an iterative scheme or, equivalently, the order
of convergence of an iterative scheme is p and if the ith iterate is correct up
to t digits, then the (i + 1)st iterate will be correct up to about pt digits. For
instance, if the eighth iterate of the classical (second order) Newton scheme for
computing a zero of the function (polynomial) f(x) = x3 − 27 is correct up to 4
digits, then the ninth iterate will be correct up to about 4× 2 = 8 digits. This
can be readily seen using the Matlab commands

>>format long g ; x=27, for i =1:10 , i , x=x−(xˆ3−27)/(3∗x ˆ2) ,end ;

where the initial approximation (0th iterate) is chosen as x0 = 27 (not a good
one), the precision of computation used by Matlab was 15 digits. The 8th iterate
was then x8 = 3.00007335660249 while the ninth iterate x9 = 3.00000000179367.

Recently, even sixteenth order methods for nonlinear equations have been
reported [16]. It is difficult to derive an iterative scheme of any arbitrary or-
der of convergence. The questions then arise: Is there any optimal order of
convergence of an iterative scheme that minimizes the amount of computation
for solving any non-linear equation for a specified accuracy? Does the order of
convergence always imply the same order of accuracy depicted in the foregoing
numerical example? As to the first question, our numerical experiments over
a large spectrum of problems consisting of zero-finding problems, higher order
schemes need not be computationally more economical than a second or a third
order process. Certainly, such a statement is shown mathematically as well as
computationally valid when we use the following iterative schemes to compute
the Moore-Penrose (minimum-norm least squares) inverse of a well-conditioned
rectangular (including square ones) matrix A [23, 25].

Computational pitfalls of high order methods 397

Xk+1 = Xk + Yk (for only square matrix A) (linear)
Xk+1 = Xk(I + Yk) (quadratic)
Xk+1 = Xk(I + Yk(I + Yk)) (cubic)
Xk+1 = Xk(I + Yk(I + Yk(I + Yk))) (quartic)
Xk+1 = Xk(I + Yk(I + Yk(I + Yk(I + Yk)))) (quintic)

...
Xk+1 = Xk(I + Yk(I + Yk(I + Yk(I + Yk(· · · (I + Yk) · · ·)))) (pth order)

where Yk = I −AXk for k = 0, 1, 2, . . . with X0 = At/tr(AAt) and tr being the
trace.

Xk+1 for sufficiently large k will be the required Moore-Penrose inverse. Here
if the matrix is well-conditioned (i.e. not having too near linearly dependent
rows), the cubic process is computationally more economical than any other
process, although sometimes the quadratic scheme also is a competitor. Or,
in other words, the second order scheme or the third order scheme is most
economical computationally. Comparative study of the amount of computation
needed in various schemes is made in Table 1.

Table 1. Amount of computation required in various iterative
schemes for specified accuracy (a=one matrix addition, m=one
matrix multiplication).

Process Number of Iterations Amount of Computation
Linear n1 = k n1 = (2a+m)
Quadratic n2 ≈ loge k/ loge 2 n2(2a+ 2m) = 2.885(a+m) loge k
Cubic n3 ≈ loge k/ loge 3 n3(3a+ 3m) = 2.731(a+m) loge k
Quartic n4 ≈ loge k/ loge 4 n4(4a+ 4m) = 2.885(a+m) loge k
Quintic n5 ≈ loge k/ loge 5 n5(5a+ 5m) = 3.107(a+m) loge k

We present, in section 2, two iterative schemes one fourth order and the other
eighth order without derivations [13, 26]. The fourth order scheme needs three
function-evaluations per iteration while the eighth order scheme requires four
function-evaluations per iteration. The scope of these schemes for real-world
computations specifically with respect to ill-posed nonlinear equations having
root-clusters and also with repeated roots is included in section 3. These high or-
der schemes are compared with the widely known (second order) Newton scheme
through numerical examples in this section. Section 4 comprises conclusions.

2. Fourth and Eighth Order Iterative Schemes

The fourth order scheme needing only three function-evaluations for obtaining
one root of the nonlinear equation f(x) = 0 is as follows.

398 S. K. Sen, R. P. Agarwal and S. K. Khattri

yi = xi −
f(xi)

f ′(xi)
, xi+1 = yi −

f(yi)

2
(

f(yi)−f(xi)
yi−xi

)
− f ′(xi)

,

i = 0, 1, 2, . . . , till
∥xi+1 − xi∥

∥xi+1∥
≤ 0.5× 10−k

(3)

where x0 is a specified initial approximation and k = the number of significant
digits to which the result (root) is required to be correct.

The eighth order scheme needing four function-evaluations per iteration to
compute one root of the equation f(x) = 0, on the other hand, is as follows.

yi = xi −
f(xi)

f ′(xi)
, zi = yi −

f(yi)

2
(

f(yi)−f(xi)
yi−xi

)
− f ′(xi)

,

xi+1 = zi −
f(zi)(xi − yi)

2(yi − zi)(xi − zi)

Aif ′(xi) +Bif(xi) + Cif(yi) +Dif(zi)
,

i = 0, 1, 2, . . . , till
∥xi+1 − xi∥

∥xi+1∥
≤ 0.5× 10−k

(4)

where

Ai=(yi − zi)
2(xi − zi)(xi − yi), Bi =− (yi − zi)

2(3xi − 2yi − zi),

Ci=(xi − zi)
3, Di =− (xi − yi)

2(xi + 2yi − 3zi),

and x0 is a specified initial approximation and k = the number of significant
digits to which the result (root) is required to be correct.

3. Scope of Proposed Schemes in Real-World Computations

Single root computation and error due to finite precision All real-world com-
putations are performed using a finite precision (finite word-length) machine
(computer). So errors are introduced in computations. This is unlike the uni-
versal natural computations which use infinite precision and hence no errors exist
in natural computations. In other words, the universal natural computer always
takes exact real quantities and produces exact real quantities as outputs. The
foregoing fourth and eighth order schemes as well as similar high and low order
schemes compute only one root of the given equation-usually the one nearest
to supplied initial approximation using a digital computer and is usually always
erroneous [22].

Complex initial approximation for complex root of real function Our schemes
like any other similar schemes including the Newton scheme need to use a com-
plex initial approximation (imaginary part ̸= 0) for computing a complex root
of a real function. However, for a complex function such a restriction is not
required. One may have a real initial approximation or an imaginary (real part
= 0) initial approximation or a complex initial approximation (both real and
imaginary parts not equal to zero). To obtain a complex root of a real poly-
nomial, a real approximation will never be able to produce a complex value
throughout the computations. The concerned arithmetic will remain always in

Computational pitfalls of high order methods 399

real field and will not have any scope to shift from real field to complex field.
In this context, by real we imply rational only rational numbers and not the
irrational numbers. Any computer can represent only a very (negligibly) small
fraction of rational numbers out all possible (infinite) rational numbers and can-
not represent an irrational number in its numerical computations.

Multiple roots-deflation of function/polynomial In a finite precision compu-
tation, for a multiple root real/complex the iterates xi will go on oscillating
around the root in Newton scheme as well as similar higher order schemes includ-
ing the foregoing ones (Schemes (2)-(4)). This is due to the error in computing
the function and its derivative, both of which tend to zero. While the numerator,
viz. the function tends to zero faster than the denominator, viz. the derivative
of the function, the error due to division by a small number becomes the reason
for numerical oscillations. Once an iterate xi goes too close to a multiple root,
the error is more pronounced resulting in a root relatively farther away from the
previous root. In subsequent iterations, the iterates xi will oscillate around the
true multiple root without converging. To obviate this oscillation, one can use
deflated Newton method [23,24]. The deflated Newton scheme is as follows.

xi+1 = xi −
fq(xi)

fq+1(xi)
,

i = 0, 1, 2, . . . , till
|xi+1 − xi|

xi+1
≤ 0.5× 10−k and|fq+1(xi)| ̸= 0,

(5)

where q = 0, 1, 2, . . . , s − 1, s being the number of repeated roots and x0 is an
initial approximation (numerically supplied). When s = 1(q = 0), the deflated
Newton method reduces to the conventional Newton method. Also, it is not
necessary to know beforehand the number of repetitions of a root. Near a re-
peated root, the iterates xi oscillate around the root (without converging) due
to rounding errors present in finite precision computation; this serves as an in-
dication for the repetition of a root. The deflation starts. Since either x0 (the
initial approximation) or the actual root could be a complex number, complex
arithmetic is used for computing a zero, using the foregoing scheme.

Multiple zeros can only be found if the given function is a polynomial (of
finite degree) or a function having a polynomial factor and a transcendental
factor (polynomial of degree infinity). In fact, a transcendental function (having
no polynomial factor which is usually the case) cannot have multiple zeros, it
may have zero-clusters though [24].

Root-clusters: Ill-posed problems All the methods including the foregoing
schemes (2)-(5) so far developed produce varying degree of accuracy and of-
ten the roots computed by high or low order fixed-point iteration schemes are
not acceptable. In the present 21st century computing environment, the best
approach is a simple exhaustive search after locating/bracketing a root-cluster
within a sufficiently small interval/region[24].

Numerical experiment using Matlab

400 S. K. Sen, R. P. Agarwal and S. K. Khattri

Example 1. Consider the polynomial

f(x) = x4 − 10.002x3 + 36.015999x2 − 56.039993998x+ 32.031991992

having a zero-cluster. Its derivative is

f ′(x) = 4x3 − 3× 10.002x2 + 2× 36.015999x− 56.039993998.

f(x) has zeros 1.999, 2.001, 2.002, 4. The Matlab commands (without stopping
condition based on relative error) used for the fourth order scheme (3) are in the
script file fourthorderrootcluster which is as follows

clear a l l ; format long g ; x=20;

for n=1:7 , y = x − f c (x)/ fcp (x) ;

x=y−(f c (y) / ((2∗ (f c (y)− f c (x)) / (y−x))− f cp (x))) , end ;

where the function fc(x) and its derivative fcp(x) subprograms are

function [f c] = f c (x)

f c=xˆ4−10.002∗xˆ3+36.015999∗xˆ2−56.039993998∗x+32.031991992;

and

function [f cp] = fcp (x)

f cp=4∗xˆ3− 3∗10.002∗xˆ2 + 2∗ 36.015999∗x−56.039993998;

respectively.
On execution of the program fourthorderrootcluster, the successive iter-

ates xi are
11.8827704314505, 7.57084912651869, 5.32653899020177, 4.27485980243537,

4.00512009650793, 4.0000000015191, 4.00000000000001.
We see that the iterates xi with the initial approximation x0 = 20 converge to

the distinct zero 4. Using the factor x−4 we may deflate the polynomial to make
it a third order polynomial and try to compute the zeros in the zero-cluster. Or,
without deflating, we take another appropriate initial approximation and try to
obtain a zero in the cluster. The proposed schemes including all existing fixed-
point schemes so far available are not likely to perform well unless we increase
the precision of computation beyond the standard precision of 15 digits [24]. If
we replace, in the script file fourthorderrootcluster, x = 20 by x = 2, then
on executing the program, we get the successive iterates xi as

2.00199207494168, 2.00199999879958, 2.00199999737707, 2.00199999737707,

2.00199999737707, 2.00199999737707, 2.00199999737707,

where the zero (iterate) x7 = 2.00199999737707 (correct up to 9 decimal digits),
which is closer to 2.002 than to 2.001 or 1.999 which were closest to the initial
approximation x0 = 2. Although the accuracy does not seem to be too bad
here for this small polynomial, a deflation could result in unacceptable errors
while computing the other zeros in the cluster. Also, for a polynomial of higher
degree with two or more zero-clusters, the error will be simply unacceptable [24]
for both the high order as well as low order schemes. These errors are due to

Computational pitfalls of high order methods 401

the fixed precision which is usually in most computation 15 digits only. The
best approach, in the current ultra-high speed computing era with over 90%
computing power wasted due to non-usage of laptops/desktops would be to use
exhaustive search in a significantly narrow region in which the zeros of a cluster
are situated [24].

If we now consider the Matlab program eighthordermethodrootcluster,
viz.

clear a l l ; format long g ;

x=20, for i =1:7 , y=x−f c (x)/ fcp (x) ; n=f c (y) ;

d=2∗(f c (y)− f c (x)) / (y−x) −f cp (x) ; z= y−n/d ;
A=(x−y)∗ (x−z)∗ (y−z) ˆ 2 ; B=−(y−z)ˆ2∗(3∗x−2∗y−z) ;C=(x−z) ˆ 3 ;

D=−(x−y)ˆ2∗(2∗y−3∗z+x) ; n1=f c (z)∗ (x−y)ˆ2∗ (y−z)∗ (x−z) ;

d1=A∗ f cp (x)+B∗ f c (x)+C∗ f c (y)+D∗ f c (z) ; x=z−n1/d1 , end ;

where fc and fcp are as defined above with initial approximation x0 = 20, then
we obtain the iterates xi as

9.72271212208445, 5.57654778173109, 4.13064288029322, 4.00000027522581,
NaN,NaN.

This numerical results for this small polynomial indicates that the eighth order
method has performed worse than the fourth order method even for computing
the distinct zero which is 4 here. Further, it did not remain fixed-point as as NaN
(not a number implying 0/0 or ∞/∞) in the standard 15 digits computation.
If we now replace in the program eighthordermethodrootcluster, x = 20 by
x = 2 and execute the program, we get the iterate xi as

2.00200008338187 (correct up to 8 decimal digits), NaN,NaN,NaN,NaN,NaN.

The eighth order method is less accurate than the fourth order method. Fur-
thermore, it violates the character of a fixed-point iterative scheme by virtue
of producing NaN. This is undesirable. However, by arranging the arithmetic
computation in the iteration scheme, accuracy may be marginally improved.

Example 2. Consider now the 10th degree polynomial f(x) with multiple zero
5, 5, 5, 5, 5, 5, 5, 5, 5, 5. The function subprogram fm and its derivative subpro-
gram fmp are

function [fm]=fm(x)

fm=xˆ10−50∗xˆ9+1125∗xˆ8−15000∗xˆ7+131250∗xˆ6−787500∗xˆ5
+3281250∗xˆ4−9375000∗xˆ3+17578125∗xˆ2−19531250∗x+9765625;

and

function [fmp]=fmp(x)

fmp=10∗xˆ9−9∗50∗xˆ8+8∗1125∗xˆ7−7∗15000∗xˆ6+6∗131250∗xˆ5−
5∗787500∗xˆ4+4∗3281250∗xˆ3−3∗9375000∗xˆ2+2∗17578125∗x
−19531250;

respectively. The Matlab program fourthorderrepeatedroots is as follows.

402 S. K. Sen, R. P. Agarwal and S. K. Khattri

clear a l l ; format long g ; x=20;

for n=1:40 , y=x−fm(x)/ fmp(x) ;

x=y−(fm(y) / ((2∗ (fm(y)−fm(x)) / (y−x))−fmp(x))) , end ;

On execution of this program, we get the successive iterates xi as
16.7718336352876, 14.2384044757925, 12.2501973696347, 10.6898744838891,

9.46535038866577, 8.5043574599222, 7.75018086771735, 7.15831144320801,
6.69381888317328, 6.32929028116822, 6.04321231118897, 5.81870002175088,
5.64250496585513, 5.50421818160933, 5.39584227120809, 5.31375999964652,
5.21688307830152, 5.2338015566893, 5.31083436696033, 5.19271762687222,
5.24636188076744, 5.19499188820688, 5.21873289540113, 5.18922276358921,
4.99024237143234, 5.29580602486053, 5.24829790650256, 5.24968427013892,
5.18304715429968, 5.22671259095404, 5.17090654760647, 5.14590654760647,
5.20919768684698, NaN,NaN, . . .

The result produced by the fourthorderrepeatedroots program is simply
unacceptable. The iterates go on oscillating around the exact zero 5. It is even
incorrect at the very first decimal place. After some oscillations it produces NaN
(not a number, i.e. 0/0 or ∞/∞) which is an additional drawback of high order
iterative methods. The second order deflated Newton scheme (5), on the other
hand, will produce all the ten zeros 5,5, 5, 5, 5, 5, 5, 5, 5, 5 very accurately (rather
exactly within the precision) by successive deflation (nine times). This deflation
can be symbolically performed in Matlab and then the numerical computation
can be superimposed. The iterates in the second order Newton scheme (2) too
will oscillate around the root 5 due to fixed-precision computation involving
rounding errors. In addition, the scheme could produce NaN. As a matter of
fact, both low order as well as high order schemes will fare badly as such unless
appropriate remedial measures are adopted.

If we now execute the Matlab program eighthordermethodrepeatedroots,
viz.,

clear a l l ; format long g ;

x=20, for i =1:40 ,

y=x−fm(x)/ fmp(x) ; n=fm(y) ; d=2∗(fm(y)−fm(x)) / (y−x)−fmp(x) ;

z=y−n/d ;
A=(x−y)∗ (x−z)∗ (y−z) ˆ 2 ; B=−(y−z)ˆ2∗(3∗x−2∗y−z) ; C=(x−z)ˆ3

D=−(x−y)ˆ2∗(2∗y−3∗z+x) ; n1=fm(z)∗ (x−y)ˆ2∗ (y−z)∗ (x−z) ;

d1=A∗fmp(x)+B∗fm(x)+C∗fm(y)+D∗fm(z) ; x=z−n1/d1 , end ;

then the successive iterates xi will oscillate around the zero 5 and will not ap-
proach reasonably close to 5. It is even worse than the foregoing fourth order
scheme both in terms of number of iterations as well as in terms of accuracy.
Although NaN does not appear in this eighth order scheme, the iterates will
continue to oscillate for ever in a way which is usually worse than a lower order
method. These iterates will be as follows.

Computational pitfalls of high order methods 403

15.9979173493121, 13.0636124014867, 10.9121961818964, 9.33478966409772,
8.17824389683044, 7.33027091290792, 6.70854179391171, 6.25269342675679,
5.91846760696389, 5.67341591862772, 5.49379534694353, 5.36253632589853,
5.25709333231426, 5.30288526913316, 4.85109560106865, 4.88907378669703,
4.89404237321551, 4.90409909315816, 5.56960552492844, 5.41770782457898,
5.30335312695354, 5.30824693347822, 5.19180833637212, 5.21561644685535,
5.01809362914905, 5.88932562621055, 5.6520451695298, 5.47809204196954,
5.35021936639331, 5.24984132008913, 5.24283552977236, 5.25193398430819,
5.22383270927142, 5.16744730887884, 5.17658659944416, 4.87606980008085,
4.75738936255274, 4.95554630760618, 5.95245208860072, 5.69833526864787.

Example 3. Consider the real polynomial1 f(x) = x10 − 310 having 8 com-
plex (conjugate) zeros and two real zeros −3, 3. The following Matlab program
fourthordercomplexrealroots for the fourth order scheme, viz.

clear a l l ; format long g ; x=10ˆ10

for n=1:100 , y=x−f c r (x)/ f c rp (x) ;

x=y−(f c r (y) / ((2∗ (f c r (y)− f c r (x)) / (y−x))− f c r p (x))) , end ;

along with the following subprograms fcr and fcrp, viz.

function [f c r]= f c r (x)

f c r=xˆ10−3ˆ10;

and

function [f c r p]= f c rp (x)

f c rp=10∗x ˆ9 ;
will need 93 iterations to obtain 3 as a zero (root) when the initial approximation
was chosen as 1010. The output from 94th iteration onwards resulted in NaN
(i.e. 0/0 form here) and not 3. If we take the initial approximation as 32 = 9
then in 7 iterations of the fourth order scheme, we obtain the root as 3. The
output from 8th iteration onwards becomes NaN indicating that the iteration
does not remain fixed-point. The eighth order scheme, viz.

clear a l l ; format long g ;

x=10ˆ10 , for i =1:80 , y=x−f c r (x)/ f c rp (x) ; n=f c r (y) ;

d=2∗(f c r (y)− f c r (x)) / (y−x)− f c r p (x) ;

z=y−n/d ;
A=(x−y)∗ (x−z)∗ (y−z) ˆ 2 ; B=−(y−z)ˆ2∗(3∗x−2∗y−z) ; C=(x−z) ˆ 3 ;

D=−(x−y)ˆ2∗(2∗y−3∗z+x) ; n1=f c r (z)∗ (x−y)ˆ2∗ (y−z)∗ (x−z) ;

d1=A∗ f c r p (x)+B∗ f c r (x)+C∗ f c r (y)+D∗ f c r (z) ; x=z−n1/d1 , end ;

will need 72 iterations to obtain 3.00000000000029 as a zero when the initial
approximation was chosen as 1010. The output from 73rd iteration onwards
resulted in NaN (i.e. 0/0 form here) and not 3. If we take the initial approxi-
mation as 32 = 9 then in 5 iterations of the eighth order scheme, we obtain the
root as 3. The output from 6th iteration onwards becomes NaN indicating that

404 S. K. Sen, R. P. Agarwal and S. K. Khattri

the iteration does not remain fixed-point. The output NaN is due to numerical
instability which is due to insufficient precision of computation. In other words,
the standard precision of 15 digits, which is employed in almost all real-world
computational problems is insufficient for the high order methods. To obviate
this precision problem , one needs to use non-standard precision which should be
indefinitely large (finite though) in this context. vpa (variable precision arith-
metic) in Matlab for sufficiently large precision computation may be employed,
although it has its own limitations.

The Newton scheme (2) (used here without stopping condition based on rel-
ative error), viz. newtonsecondorder

clear a l l ; format long g ; x=9;

for n=1:18 , x=x−f (x)/ fp (x) , end ;

along with the subprograms f and fp, viz.

function [f]= f (x)

f=xˆ10−3ˆ10;

and

function [fp]= fp (x)

fp=10∗x ˆ9 ;

on the other hand produces the root as 3 in 15th iteration and continue to remain
3 afterwards unlike the fourth order scheme. If we take an initial approximation
−1010 then the Newton scheme produces −3 as the root at 112th iteration. The
root remains as −3 in subsequent iterations; no NaN is produced. The fourth
order scheme with x = −1010 as the initial approximation produces −3 as the
root at 93rd iteration. The root becomes NaN from 94th iterations onwards.

It may be seen from Table 2 that, for the foregoing equation f(x) = x10−310 =
0, when the initial approximation is chosen as x0 = 1010 under the Matlab
standard precision of 15 digits, the (second order) Newton method needs the
least number of function-evaluations.

Table 2. Overall number of function-evaluations in 2nd, 4th

and 8th order schemes to obtain root 3 for the equation x10 −
310 = 0 under Matlab standard precision of 15 digits. Initial
approximation chosen as x0 = 1010.

Scheme No. of function Overall number Remark
evaluations per of function evaluations

iteration
2nd order 2 112× 2 = 224 Cheapest
4th order 3 93× 3 = 279
8th order 4 72× 4 = 288 Costliest

Computational pitfalls of high order methods 405

Besides the cost, viz., the computational complexity which could be more for a
higher order scheme, the numerical instability could also be more pronounced in
this scheme as NaN (Not a Number such as 0/0 and ∞/∞ form) is more likely
to occur here than in a low order scheme. It may be remarked that infinite
precision computation which is only in the jurisdiction of natural computation
– ever error-free, ever exact, ever perfect - is completely out of bound for the
available computers in the world and will remain so for ever. Thus high order
schemes with optimal number of function evaluations per iteration are at best
of academic interest.

The Matlab roots command, viz.,

>> roots ([1 0 0 0 0 0 0 0 0 0 −3ˆ10])

for the equation (polynomial) x10 − 310 = 0 produces the roots

ans =

−3

−2.42705098312485 + 1.76335575687742 i

−2.42705098312485 − 1.76335575687742 i

−0.92705098312484 + 2.85316954888546 i

−0.92705098312484 − 2.85316954888546 i

0.927050983124845 + 2.85316954888546 i

0.927050983124845 − 2.85316954888546 i

3

2.42705098312484 + 1.76335575687742 i

2.42705098312484 − 1.76335575687742 i

which result in the polynomial when poly(ans) is executed, whose coefficients
are

1 (coefficient of x10)
−5.32907051820075e−015 −1.99840144432528e−014
1.4210854715202e−014 6.96331881044898e−013
−2.8421709430404e−012 3.97903932025656e−012
−8.29913915367797e−012 3.41060513164848e−012
−1.81898940354586e−012 −59049.0000000001(constant term ∼= −310).
The Matlab constructed polynomial is sufficiently good in a real-world situ-

ation. While Matlab roots produce all the roots of the equation, the schemes
here produce only one root at a time.

Example 4. We now consider a complex polynomial f(x) = x2 +(3+5i)x+7i
whose zeros are complex and take an initial approximation 5. Since the polyno-
mial is complex, the computations are carried out using complex arithmetic and
we obtain the complex zeros without any problem even though the initial ap-
proximation is a real number. The Matlab program for the fourth order scheme
(omitting stopping condition based on relative error) fourthordercomplex-
ploy along with its function and its derivative subprograms fco, fcop are

406 S. K. Sen, R. P. Agarwal and S. K. Khattri

clear a l l ; format long g ; x=5;

for n=1:10 ,

y=x−f c o (x)/ fcop (x) ;

x=y−(f c o (y) / ((2∗ (f c o (y)− f c o (x)) / (y−x))− f cop (x))) ,

end ;

function [f c o]= f co (x)

f c o=xˆ2+(3+5 i)∗x−4+7 i ;

and

function [f cop]= fcop (x)

fcop=2∗x+(3+5 i) ;

On execution of the program fourthordercomplexploy, we obtain the succes-
sive iterates xi are

0.15754392789989− 1.79189522142255i,−0.939407647732583− 2.04102205128106i

− 1.00000170547744− 1.99999045181327i,−1− 2i,−1− 2i,NaN +NaNi,

NaN +NaNi,NaN +NaNi,NaN +NaNi,NaN +NaNi.

To obtain the other complex zero we need to take a negative (real) initial
approximation, say x0 = −5. A positive initial approximation will always result
in the earlier zero −1− 2i. In the foregoing fourth order program, if we replace
x = 5 by x = −5, then we get the other root −2−3i in the 5th iteration while 8th
iteration onwards we get NaN +NaNi. When we use the Newton scheme with
initial approximation x0 = 5, we obtain the root in the 7th iteration (correct
up to 9 decimal digits) and no NaN +NaNi is produced. The complex initial
approximation −1 − i will result in the root −1 − 2i while the complex initial
approximation −3− 4i will result in the other root −2− 3i.

4. Conclusions

Matlab roots versus the high order iterative schemes The high order iterative
schemes like other similar existing schemes are definitely of academic interest.
The schemes presented here finds one root of an equation at a time while the
Matlab roots produce all the roots at the same time fairly accurately as long as
the roots are not considerably clustered or highly repeated. The implementation
details of the command roots are not known to a Matlab user. The polynomial
equation (with a root-cluster) whose roots are 1.999, 2.001, 2.002 and 4 is, using
the Matlab command,

>> format long g ; poly ([1 . 9 9 9 2 .001 2 .002 4])

x4 − 10.002x3 + 36.015999x2 − 56.039993998x + 32.031991992 = 0, where the
output of the command was

ans = 1 −10.002 36.015999 −56.039993998 32.031991992

Computational pitfalls of high order methods 407

The Matlab command roots(ans) then produces all the roots
4.00000000000001, 2.00199999527988, 2.00100000706712, and 1.99899999765298 at

the same time, which are reasonably good. The presented schemes find the
roots with an appropriate initial approximation one at a time, which are also
reasonably good. However, the iterates in higher order schemes may not remain
fixed after sufficient number of iterations. See, for instance, the iterates in the
eighth order scheme in Example 1. For the foregoing repeated roots in Example
2, we have similarly

>> format long g ; poly ([5 5 5 5 5 5 5 5 5 5])

ans = 1 −50 1125 −15000 131250 −787500 3281250

−9375000 17578125 −19531250 9765625

>> roots (ans)

ans =

5.2708860862188

5.21657123682004 + 0.161087508718445 i

5.21657123682004 − 0.161087508718445 i

5.07796968457484 + 0.255734028629629 i

5.07796968457484 − 0.255734028629629 i

4.91377060087738 + 0.249729492943409 i

4.91377060087738 − 0.249729492943409 i

4.78658703847331 + 0.151382226453981 i

4.78658703847331 − 0.151382226453981 i

4.73931679229006

The foregoing 2 real roots and 8 complex roots are not acceptable when the
actual roots are all 5. Thus the Matlab roots command did not fare well. From
Example 2 we see that higher the order of the iterative scheme is, worse are
the computed roots. This implies that the numerical instability (due to fixed
precision of computation) becomes more pronounced as we go from lower order to
higher order schemes. Incidentally, the deflated Newton scheme (second order)
is bets suited to tackle the multiple root problem. For this problem, the deflated
Newton method produces all the ten roots, viz. 5 very accurately.

Overall number of function-evaluations is more important than that per itera-
tion and numerical instability From Example 3, we see that, to achieve a specified
accuracy, the overall number of function-evaluations is more important than that
per iteration. Not only the cost, viz., the computational complexity could be
more for a higher order scheme, but also the numerical instability could be more
pronounced in this scheme as NaN (Not a Number such as 0/0 and ∞/∞ form)
is more likely to occur here than in a low order scheme. It may be remarked that
infinite precision computation which is only in the jurisdiction of natural com-
putation – ever error-free, ever exact, ever perfect – is completely out of bound
for the available computers in the world and will remain so for ever. In the realm
of a variable precision computation, to allow indefinitely large precision for an

408 S. K. Sen, R. P. Agarwal and S. K. Khattri

iterative scheme could be a memory problem unlike for a non-iterative scheme.
High order schemes with optimal number of function evaluations per iteration
are more of academic interest than of real practical utility.

Impact of computing power on practical usage of a method Computing power
available to us has a significant impact on the practical utility of a method. In
the current 21st century, we are having at our disposal enormous computing
resources. An estimated over 90% of this power remains unutilized and thus a
waste. Unlike the main frame days during the mid-twentieth century as well
as even late twentieth century when many users used to use one single large
computer in batches, this century as well as late 1980s have witnessed internet
revolution and rapid change in computing scene. Every 18 months processor
speed is doubling, every 12 months band width is doubling, and every 9 months
hard disk space is doubling in our silicon technology/architecture. Today we are
in teraflops (1012 floating point operations per second) speed and have touched
petaflops (1015 floating-point operations per second) speed and now are heading
toward exaflops (1018 floating-point operations). Most of the engineers, scien-
tists, and students all over the globe have their personal laptops/desktops which
are used hardly 10% time on an average. Under these circumstances, it is not
much meaningful to attach too much of importance to computational complexity
when it is significantly small. But when one needs to solve millions of problems
such as polynomial zero-finding problem in real-time, saving a millisecond for
a problem is important. Hence the computationally optimal iterative schemes
(which are often not high order) that save time and produce quality roots (more
accurate), has a scope in real-time/embedded computations.

Matrix eigenvalue problem versus fixed-point iterative schemes Matrix meth-
ods for matrix eigenvalue problems essentially compute all the zeros of the cor-
responding characteristic polynomial. Most of the matrix iterative methods
produce all the zeros (eigenvalues) simultaneously. All the presented iterative
schemes, except possibly deflated Newton scheme, could only find one zero at a
time. To find other zeros, we need to deflate the polynomial by factoring and
then using a scheme. Or we try a different initial approximation for the original
(undeflated) polynomial to get another zero this may not always succeed, how-
ever. The deflated Newton scheme can find all the repeated zeros by successive
differentiation/deflation with an appropriate initial approximation while other
non-repeated zeros are obtained in the same way as the Newton method does.

Zero-clusters and multiple zeros: Oscillation around a zero Any polynomial
with zero-clusters are considered ill-posed. To meaningfully obtain all the zeros
in a cluster so that the zeros are reasonably known with an acceptable accuracy
is always a problem to a varying degree with all the methods – all fixed-point it-
erative methods as well as all matrix eigenvalue finding methods – so far devised.
The best approach is, however, the exhaustive search algorithm for both zero-
cluster and multiple-zero problems so far as the quality of solution is concerned
[24].

Computational pitfalls of high order methods 409

Convergence of iterations For polynomials the foregoing iteration schemes
starting from Newton scheme upwards (higher order convergence) will always
converge for any (complex) initial approximation far or near the zero assuming
that (i) the precision is sufficiently large, (ii) zeros are distinct, and not clustered
or repeated, and (iii) the number of iterations allowed is sufficiently large.

Computational implication of order of convergence If the order of convergence
is k and the zero is correct up to d decimal digits then, roughly speaking, at the
(k + 1)st iteration the zero will be correct up to kd decimal digits. This is
(more or less) true when the zero is neither in a cluster nor a multiple zero.
In zero-cluster and multiple-zero problems, the actual convergence will be too
slow and then around the zero there will be oscillations due to computational
errors caused by the finite precision of the computer. The higher order schemes
will perform usually worse than the Newton scheme for these problems. In fact,
numerical instability is more pronounced in higher order schemes.

Optimal order of convergence It is always possible to develop any high-order
method. The question then crops up: Is it that the higher the order of method
is, better it is for computations? The answer is obviously no. Otherwise, the
Newton method which is a second order one and other variations of Newton
method would have been possibly forgotten long back. The higher the order of
the method is beyond 2 or 3, more is usually the computation. Is the cost of
computation or, in other words, computational complexity less for higher order
schemes than lower order schemes? Is there an optimal order? The answer to
the first question is not necessarily, in general while the answer to our second
question is yes, in general. Through numerical experiments or/and through theo-
retical computational complexity, we have seen that the order 2 or 3 are usually
optimal (computationally). A rigorous mathematical proof for any nonlinear
equation including those with root-clusters and also those with multiple roots is
yet an open problem.

References

1. S. Weerakoon and T.G.I. Fernando, A variant of Newtons method for accelerated third-order
convergence, Appl. Math. Lett. 13 (8), 2000, 87-93.

2. M. Frontini and E. Sormani, Some variant of Newtons method with third-order convergence,

Appl. Math. Comput. 140, 2003, 419-426.
3. H.H.H. Homeier, On Newton-type methods with cubic convergence, I. Comput. Appl. Math.,

176, 2005, 425-432.
4. H.H.H. Homeier, A modified Newton method for root-finding with cubic convergence, J.

Comput. Appl. Math., 157, 2003, 227-230.
5. H.T. Kung and J.F. Traub, Optimal order of one-point and multi-point iteration, J. Assoc.

Comput. Math., 21, 1974, 634-651.

6. P. Jarratt, Some fourth order multi-point iterative methods for solving equations, Math.
Comp., 20 (5), 1966, 434-437.

7. C. Chun, Some fourth-order iterative methods for solving nonlinear equations, Appl. Math.
Comput., 195 (2), 2008, 454-459.

410 S. K. Sen, R. P. Agarwal and S. K. Khattri

8. A.K. Maheshwari, A fourth-order iterative method for solving nonlinear equations, Appl.
Math. Comput., 211 (2), 2009, 383-391.

9. J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, New York, 1964.

10. A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New
York, 1966.

11. J. Kou, Y. Li and X. Wang, A composite fourth-order iterative method, Appl. Math.
Comput., 184, 2007, 471-475.

12. R. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal.,
10, 1973, 876-879.

13. M.S. Petkovic, On a general class of multipoint root-finding methods of high computational
efficiency, SIAM J. Numer. Anal., 47 (6), 2010, 4402-4414.

14. S.K. Khattri, Altered Jacobian Newton iterative method for nonlinear elliptic problems,
IAENG Int. J. Appl. Math., 38, 2008.

15. V. Kanwar and S.K. Tomar, Modified families of Newton, Halley and Chebyshev methods,
Appl. Math. Comput. 192 (1), 2007, 20-26.

16. X. Li, C. Mu, J. Ma, and C. Wang, Sixteenth order method for nonlinear equations, Appl.
Math. Comput. 215 (10), 2009, 3754-3758.

17. H. Ren, Q. Wu, and W. Bi, New variants of Jarratts method with sixth-order convergence,
Numer. Algorithms, 52, 2009, 585-603.

18. X. Wang, J. Kou, and Y. Li, A variant of Jarratts method with sixth-order convergence,
Appl. Math. Comput., 190, 2008, 14-19.

19. J.R. Sharma and R.K. Guha, A family of modified Ostrowski methods with accelerated

sixth order convergence, Appl. Math. Comput., 190, 2007, 111-115.
20. B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math.,

7, 1979, 157-161.
21. C. Chun and Y. Ham, Some sixth-order variants of Ostrowski root-finding methods, Appl.

Math. Comput., 193, 2003, 389-394.
22. V. Lahshmikantham and S.K. Sen, Computational Error and Complexity in Science and

Engineering, Elsevier, Amsterdam, 2005.
23. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in Science and

Engineering, Affiliated East-West Press, New Delhi, 2007.
24. S.K. Sen and R.P. Agarwal, Zero-clusters of polynomials: Best approach in supercomputing

era, Appl. Math. Comput., 215, 2010, 4080-4093.
25. S.K. Sen and S.S. Prabhu, Optimal iterative schemes for computing Moore-Penrose matrix

inverse, Int. J. Systems Sci., 8, 1976, 748-753.
26. J. Kuo, X. Wang and Y. Li, Some eighth-order root finding three step methods, Commu-

nications in Nonlinear Science and Numerical Simulation, 15, 2010, 536-544.

Syamal K. Sen First Author received Ph.D. from Indian Institute of Science (I.I.Sc.),
Bangalore in 1973. Prior to joining Florida Institute of Technology, Melbourne, Florida as

a professor, he was a professor in I.I.Sc. His research activities include applicable computa-
tional mathematics and operations research.

Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University
Boulevard Melbourne, Florida 32901, USA.

e-mail: sksen@fit.edu

Ravi P. Agarwal received Ph.D. from Indian Institute of Technology, Madras in 1973.
He is currently a professor and the chairman of Mathematics at Texas A&M University-
Kingsville. His research interest includes computational mathematics besides differential
equations.

Computational pitfalls of high order methods 411

Department of Mathematics, Texas A & M University-Kingsville, 700 University Boulevard
Kingsville, TX 78363-8202, USA.
e-mail: Agarwal@tamuk.edu

Sanjay K. Khattri received M.S. from Texas A & M University College Station and Ph.D
at the University of Bergen. Since 2006 he has been working as Associate Professor at the
Stord-Haugesund University College. His research interests include scientific computing and

numerical analysis.

Department of Engineering, Stord-Haugesund University College, Haugesund, 5528, Nor-
way.
e-mail: sanjay.khattri@hsh.no

