References
- S.Weerakoon and T.G.I. Fernando, A variant of Newtons method for accelerated third-order convergence, Appl. Math. Lett. 13 (8), 2000, 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2
- M. Frontini and E. Sormani, Some variant of Newtons method with third-order convergence, Appl. Math. Comput. 140, 2003, 419-426.
- H.H.H. Homeier, On Newton-type methods with cubic convergence, I. Comput. Appl. Math., 176, 2005, 425-432. https://doi.org/10.1016/j.cam.2004.07.027
- H.H.H. Homeier, A modified Newton method for root-finding with cubic convergence, J. Comput. Appl. Math., 157, 2003, 227-230. https://doi.org/10.1016/S0377-0427(03)00391-1
- H.T. Kung and J.F. Traub, Optimal order of one-point and multi-point iteration, J. Assoc. Comput. Math., 21, 1974, 634-651.
- P. Jarratt, Some fourth order multi-point iterative methods for solving equations, Math. Comp., 20 (5), 1966, 434-437. https://doi.org/10.1090/S0025-5718-66-99924-8
- C. Chun, Some fourth-order iterative methods for solving nonlinear equations, Appl. Math. Comput., 195 (2), 2008, 454-459. https://doi.org/10.1016/j.amc.2007.04.105
- A.K. Maheshwari, A fourth-order iterative method for solving nonlinear equations, Appl. Math. Comput., 211 (2), 2009, 383-391. https://doi.org/10.1016/j.amc.2009.01.047
- J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, New York, 1964.
- A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1966.
- J. Kou, Y. Li and X. Wang, A composite fourth-order iterative method, Appl. Math. Comput., 184, 2007, 471-475.
- R. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal., 10, 1973, 876-879. https://doi.org/10.1137/0710072
- M.S. Petkovic, On a general class of multipoint root-finding methods of high computational efficiency, SIAM J. Numer. Anal., 47 (6), 2010, 4402-4414. https://doi.org/10.1137/090758763
- S.K. Khattri, Altered Jacobian Newton iterative method for nonlinear elliptic problems, IAENG Int. J. Appl. Math., 38, 2008.
- V. Kanwar and S.K. Tomar, Modified families of Newton, Halley and Chebyshev methods, Appl. Math. Comput. 192 (1), 2007, 20-26. https://doi.org/10.1016/j.amc.2007.02.119
- X. Li, C. Mu, J. Ma, and C. Wang, Sixteenth order method for nonlinear equations, Appl. Math. Comput. 215 (10), 2009, 3754-3758. https://doi.org/10.1016/j.amc.2009.11.016
- H. Ren, Q. Wu, and W. Bi, New variants of Jarratts method with sixth-order convergence, Numer. Algorithms, 52, 2009, 585-603. https://doi.org/10.1007/s11075-009-9302-3
- X. Wang, J. Kou, and Y. Li, A variant of Jarratts method with sixth-order convergence, Appl. Math. Comput., 190, 2008, 14-19.
- J.R. Sharma and R.K. Guha, A family of modified Ostrowski methods with accelerated sixth order convergence, Appl. Math. Comput., 190, 2007, 111-115.
- B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math., 7, 1979, 157-161. https://doi.org/10.1080/00207167908803166
- C. Chun and Y. Ham, Some sixth-order variants of Ostrowski root-finding methods, Appl. Math. Comput., 193, 2003, 389-394.
- V. Lahshmikantham and S.K. Sen, Computational Error and Complexity in Science and Engineering, Elsevier, Amsterdam, 2005.
- E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in Science and Engineering, Affiliated East-West Press, New Delhi, 2007.
- S.K. Sen and R.P. Agarwal, Zero-clusters of polynomials: Best approach in supercomputing era, Appl. Math. Comput., 215, 2010, 4080-4093.
- S.K. Sen and S.S. Prabhu, Optimal iterative schemes for computing Moore-Penrose matrix inverse, Int. J. Systems Sci., 8, 1976, 748-753.
- J. Kuo, X. Wang and Y. Li, Some eighth-order root finding three step methods, Communications in Nonlinear Science and Numerical Simulation, 15, 2010, 536-544. https://doi.org/10.1016/j.cnsns.2009.04.013