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A HYBRID METHOD FOR NCP WITH P0 FUNCTIONS†

QIAN ZHOU AND YI-GUI OU∗

Abstract. This paper presents a new hybrid method for solving nonlin-
ear complementarity problems with P0-functions. It can be regarded as a
combination of smoothing trust region method with ODE-based method
and line search technique. A feature of the proposed method is that at each
iteration, a linear system is only solved once to obtain a trial step, thus
avoiding solving a trust region subproblem. Another is that when a trial
step is not accepted, the method does not resolve the linear system but
generates an iterative point whose step-length is defined by a line search.
Under some conditions, the method is proven to be globally and superlin-
early convergent. Preliminary numerical results indicate that the proposed
method is promising.
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1. Introduction

The nonlinear complementarity problem, denoted by NCP(F), is to find a
vector x ∈ Rn, such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0 (1.1)

where F : Rn → Rn is assumed to be continuously differentiable.
The nonlinear complementarity problem has many important applications in

engineering, economy equilibrium models and game theory, and many numerical
methods have been developed to solve NCP(F), such as interior-point method,
nonsmooth Newton method, smoothing method, projection method, and so on,
see Ref[1] for a survey. In this paper, we concentrate ourself on the smoothing
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method whose basic idea is to approximate nonsmooth problems by a sequence
of smooth problems.

Although much progress has been made in smoothing methods (see Refs[2-4]
and references therein), most of them proposed for solving NCP(F) are based on
line search strategy, methods based on trust region technique are relatively less.
It is well known that in many cases, trust region methods are more reliable and
more robust than line search methods and have been efficiently applied to solve
optimization problems, see Ref[5] for details. Therefore, we expect that some
more efficient methods can be designed to solve NCP(F) by incorporating the
trust region technique into smoothing methods, since NCP(F) can be reformu-
lated as a system of nonlinear equations and thus a related optimization problem
by using some NCP functions. By making use of this approach, Yang and Qi[6]
proposed a smoothing trust region method for solving NCP(F). Zhou[7] pre-
sented a smothing method for NCP(F), which combines trust region techniques
with a conic model. Long et al[8] also provided a smoothing method in which
the trust region and filter techniques are employed to tackle NCP(F). However,
the disadvantage of those methods is that at each iteration, the quadratic or
conic trust region subproblem may be resolved several times before obtaining an
acceptable trial step, thus the average cost of computation per iteration might
be expensive, especially for large-scale problems.

In recent years, some new ideas have been proposed in the literature, which
combine elements of trust region methods with elements of line search methods,
see Refs[9] and [10] for details. An advantage of them is that when a trial step
is not accepted, the new methods perform a line search to find an iterative point
instead of resolving the quadratic trust region subproblem. Therefore, the new
methods require less computation than classical trust region methods. Based on
this new idea, Qu et al[11] developed a new smoothing trust region method for
NCP(F), in which nonmonotone techniques, conic models and a line search are
combined to generate a new iterative point at each iteration. Hence this new
hybrid method has both advantages of line search method and nonmonotone
trust region method. However, those new methods in Refs[9-11] still need to
solve the quadratic or conic trust region subproblem, which is usually a difficult
task, especially for a nonconvex trust region subproblem.

As a strategy of optimization, the ODE-based methods were first introduced
into solving unconstrained optimization by Brown et al.[12]. A feature of the
ODE-based methods is that at each iteration, a linear system is solved to obtain
a trial step, which has something in common with Leverberg-Marquardt-type
method [5] for unconstrained optimization. By means of extensive experiments,
Brown et al[12] have show that, when suitably implemented, ODE-based meth-
ods can compare very favorably with conventional Newton and quasi-Newton
algorithms as regards reliability, accuracy and efficiency, especially for highly
nonlinear minimization problems with narrow and curving valleys. The disad-
vantage of the ODE-based methods is that at each iteration, the linear system
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may be resolved several times before obtaining an acceptable trial step, thus
increasing the average cost per iteration of the methods.

Motivated by the above observations, we propose a new hybrid method for
solving NCP(1.1), which combines ODE-based methods with smoothing trust
region methods and line search technique. A feature of the proposed algorithm
is that at each iteration, a system of linear equations is only solved once to obtain
a trial step, thus avoiding solving a quadratic or conic trust region subproblem.
Another is that when a trial step is not accepted, the new methods perform
a line search to find an iterative point instead of resolving the linear system.
From a computational point of view, this approach may reduce computational
complexity and thus improve computational efficiency. Under some suitable
conditions, global convergence and local superlinear convergence is established
if F is a P0 function.

This paper is organized as follows. Section 2 recalls some existing results.
In section 3, we describe our algorithm for solving NCP(F) and prove that
it is well defined. Global convergence and locally superlinear convergence are
established in sections 4 and 5, respectively. In section 6, numerical experiments
are presented.

2. Preliminaries

In this section we summarize some existing results, which will be used in the
sequel.

Let ϕ : R2 → R be Fischer-Burmeister function(see Ref[1]) defined by

ϕ(a, b) =
√
a2 + b2 − a− b.

By using the function ϕ, NCP(1.1) can be equivalently reformulated as a system
of nonlinear equations

Φ(x) = 0

where Φ : Rn → Rn is defined by

Φ (x) =




ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))




Then the natural merit function ψ : Rn → R defined by

ψ(x) =
1

2
Φ(x)TΦ(x) (1.2)

can be used to globalize the proposed algorithm. A favorable property of ψ is
that it is continuously differentiable on the whole space Rn, although Φ itself is
nonsmooth.

Since ϕ is a NCP-function, i.e.,

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0
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we can deduce from the definition of mapping Φ that

x∗ solves NCP(1.1) ⇐⇒ Φ(x∗) = 0

whenever NCP(1.1) has a solution. However, the system Φ(x) = 0 is nonsmooth.
Therefore, we will use Kanzow’s[13] smoothing approximation

ϕε(a, b) =
√
a2 + b2 + 2ε− a− b, ε > 0

to approximate the Fischer-Burmeister function. The corresponding smooth
operator Φε : R

n → Rn is defined by

Φε (x) =




ϕε(x1, F1(x))
...

ϕε(xn, Fn(x))


 (1.3)

Denote

ψε(x) =
1

2
Φε(x)

TΦε(x)

NCP(1.1) can be approximated by the following nonlinear least squares problem

min
x∈Rn

ψε(x) (1.4)

From the above discussion, it immediately follows that problem (1.4) is equiva-
lent to NCP(1.1) as ε → 0.

Let G : Rn → Rn be locally Lipschitz continuous and DG be the set of
differentiable points of G. The generalized Jacobian of G at x in the sense of
Clarke[14] is defined by

∂G(x) = conv∂BG(x)

where

∂BG(x) = {H ∈ Rn×n|H = lim
xk→x,xk∈DG

∇G(xk)}
is called as B-differential of G at x ∈ Rn. Usually, ∂G is difficult to calculate,
so we use the generalized Jacobian of the form

∂CG(x)T := ∂G1(x)× ∂G2(x)× · · · × ∂Gn(x) ∈ Rn×n

which can be seen as a special case of the C-differential operator discussed by
Qi, see Ref[1] for details.

A local Lipschitz function G : Rn → Rn is called semismooth at x ∈ Rn if G
is directionally differentiable at x and for any V ∈ ∂G(x+ d) and d → 0,

G′(x; d)− V d = o(‖d‖)
A function G : Rn → Rn is said to be a P0 function if for all x, y ∈ Rn with

x 6= y,

max
i: xi 6=yi

(xi − yi)(Gi(x)−Gi(y)) ≥ 0

Lemma 2.1 [15]. For all x ∈ Rn and any ε ≥ 0, we have

‖Φ(x)− Φε(x)‖ ≤ κ
√
ε
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where κ =
√
2n.

Lemma 2.2 [15]. Assume that {xk} ⊂ Rn is a convergent sequence with a
limit point x∗ ∈ Rn. Then the function Φ(x) is semismooth, which implies that
for any Vk ∈ ∂CΦ(x

k) ,

‖Φ(x)− Φ(x∗)− Vk(xk − x∗)‖ = o(‖xk − x∗‖)

Lemma 2.3 [15]. Let x ∈ Rn be arbitrary but fixed. Assume that x is not a
solution of NCP(F). Let us define the constants

γ(x) = max
i6=β(x)

{‖xiei + Fi(x)∇iF (x)‖} ≥ 0

and

α(x) = max
i 6=β(x)

{x2
i + Fi(x)

2} > 0

where β(x) = {i|xi = Fi(x) = 0}. Let δ > 0 be given, and define

ε̄(x, δ) =

{
1, if nγ(x)2

δ2 − α(x) ≤ 0,
α(x)2

2 · δ2

nγ(x)2−δ2α(x) , otherwise

Then

dist(Φ
′
ε(x), ∂CΦ(x)) ≤ δ

for all ε such that 0 < ε ≤ ε̄(x, δ).

Notation. Throughout this paper, the symbol ‖·‖ denotes the Euclidean norm
or the subordinate matrix norm. For a continuously differentiable mapping
G : Rn → Rm, we denote its Jacobian at a point x ∈ Rn by G′(x), whereas
∇G(x) denotes the transposed Jacobian.

3. Algorithm

In this section, we shall propose an ODE-based smoothing trust region(STR)
algorithm for solving NCP(1.1) and prove that the proposed algorithm is well
defined.

Define

Qk(d) = 1
2‖Φεk(x

k) +∇Φεk(x
k)T d‖2

= ψεk(x
k) +∇ψεk(x

k)T d+ 1
2d

T∇Φεk(x
k)∇Φεk(x

k)T d

Our algorithm for solving NCP(1.1) is stated as follows and then some remarks
are given.

Algorithm STR
Step 0. Given η, ν, r, µ satisfying 0 < η < 1, ν > 0, 0 < r < 1, 0 < µ < 1.
Choose x0 ∈ Rn, h0 > 1. Set β0 = ‖Φ(x0), C0 = (1 + µ)‖Φ(x0)‖, κ =

√
2n,

ε0 = ( µ
2C0κ

β2
0)

2, and k := 0.
Step 1. Compute the solution dk ∈ Rn of the following linear equations

(∇Φεk(x
k)∇Φεk(x

k)T +
1

hk
I)d = −∇Φεk(x

k)Φεk(x
k) (3.1)
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Step 2. Calculate

rk =
Aredk
Pr edk

(3.2)

where
Aredk = ψεk(x

k)− ψεk(x
k + dk)

Predk = ψεk(x
k)−Qk(dk)

If rk ≥ r, then set xk+1 = xk + dk(successful iteration), hk+1 = 2hk; Oth-
erwise, set hk+1 = 1

2hk and xk+1 = xk + αkdk, where αk is calculated by the
Armijo line search rule (see Remark 3.2 below).
Step 3. If ∇ψ(xk+1) = 0, stop.
Step 4. If ‖Φ(xk+1)‖ ≤ max{ηβk, µ

−1‖Φ(xk+1)−Φεk(x
k+1)‖}, then set βk+1 =

‖Φ(xk+1)‖ and choose εk+1 such that

0 < εk+1 ≤ min{( µ

2C0κ
β2
k+1)

2,
εk
4
, ε̄(xk+1, νβk+1)} (3.3)

where ε̄(·, ·) is defined in Lemma 2.3; otherwise, set βk+1 = βk, εk+1 = εk,
Step 5. Set k := k + 1, and return to Step1.

Remark 3.1. The matrix ∇Φεk(x
k)∇Φεk(x

k)T + 1
hk

I is positive definite for

any hk > 0, thus the linear equations (3.1) is always solvable.

Remark 3.2. Armijo line search rule[2]: Given ρ ∈ (0, 1) and σ ∈ (0, 1
2 ).

Set αk = ρlk , where lk is the smallest nonnegative integer such that

ψεk(x
k + ρldk) ≤ ψεk(x

k) + σρl∇ψεk(x
k)T dk (3.4)

Remark 3.3. Algorithm STR is different from Yang and Qi’s method[6], which
obtains a trial step by solving a quadratic trust region subproblem at each it-
eration and keeps steplength being null(i.e., xk+1 = xk) when a trial step is
not accepted. Also it is different from Qu’s method[12], in which a conic trust
region subproblem need to be solved per iteration. Since there is few efficient
method for solving a conic model with trust region bound so far, it is not easy
to implement.

Denote

N = {0, 1, 2, · · · }
Without loss of generality, we assume that Algorithm STR does not terminate
after a finite number of iterations, i.e., ∇ψ(xk) 6= 0 for all k ∈ N . This implies

Φ(xk) 6= 0, ∀k ∈ N (3.5)

Define the index set

K : = {0} ∪ {k| ‖Φ(xk)‖ ≤ max{ηβk−1, µ
−1‖Φεk(x

k)− Φ(xk)‖}}
= {k0 = 0 < k1 < k2 < · · · } (3.6)

By Lemma 2.1, Lemma 2.3 and the rules of Step 4 in Algorithm STR, it is easy
to deduce that

‖Φεk(x
k)− Φ(xk)‖ < µ‖Φ(xk)‖, ∀k ∈ N (3.7)
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and

dist(Φ
′
εk
(xk), ∂CΦ(x

k)) ≤ ν‖Φ(xk)‖, ∀k ∈ K, k ≥ 1 (3.8)

Lemma 3.1. For Algorithm STR, we have
(i) Predk = 1

2d
T
k (∇Φεk(x

k)∇Φεk(x
k)T + 1

hk
I)dk + 1

2hk
‖dk‖2

(ii) Predk −Aredk = O(‖dk‖2)
Lemma 3.2 [3]. ∇Φε(x) is nonsingular for all x ∈ Rn and ε > 0 if F is a P0

function.

The following Lemma shows that Algorithm STR is well-defined.

Lemma 3.3. If F is a P0 function, then Algorithm STR is well-defined, i.e.,
Predk > 0, and there exists a finite nonnegative integer l such that (3.4) holds
for any unsuccessful step.

Proof. To verify the first assertion, we only need to prove

Predk 6= 0, ∀k ∈ N

since Predk ≥ 0 by using Lemma 3.1(i) and Remark 3.1. By contradiction,
assume that there exists some l ∈ N such that Predl = 0. This implies that
dl = 0. Therefore, it follows from Lemma 3.2 and (3.1) that

Φεl(x
l) = 0

This is a contradiction to (3.7).
Now we show the existence of αk. From (3.1) and Lemma 3.1, we have

∇ψεk(x
k)T dk = −dTk (∇Φεk(x

k)∇Φεk(x
k)T +

1

hk
I)dk (3.9)

whenever ∇ψεk(x
k) 6= 0(or equivalently dk 6= 0). This implies that dk is a

descent direction of ψεk(x) at x
k. Therefore, the Armijo line search rule is finite

terminating. This proof is completed. 2

4. Global convergence

In this section, we will study the global convergence of Algorithm STR. To
this end, we make the following assumption.

A1 The level set L0 =
{
x ∈ Rn

∣∣ψ(x) ≤ (1 + µ)2ψ(x0)
}
is bounded.

Remark 4.1. If F is a uniform P -function or, more generally, an R0-function,
then the level set L0 as defined in Assumption A1 is compact and thus L0 is
bounded, see Ref[1] for details.

Lemma 4.1. If F is a P0 function, then the sequence {xk} generated by Al-
gorithm STR remains in the level set L0.

Proof. The proof is similar to that of Proposition 4.1 in Ref[6]. Here we omit
it.
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Lemma 4.2. Assume that F is a P0 function. If Assumption A1 holds, then
the sequence {xk} generated by Algorithm STR satisfies

lim
k→∞

inf ‖∇ψε̃(x
k)‖ = 0 (4.1)

where ε̃ is an accumulation point of εk.

Proof. Suppose that (4.1) does not hold. Then there exists ε > 0 such that

‖∇ψε̃(x
k)‖ = ‖∇Φε̃(x

k)Φε̃(x
k)‖ ≥ ε, ∀k (4.2)

We consider two different cases.
Case 1. there exists a subsequence of {hk}, without loss of generality, we

still denote it by {hk}, such that {hk} → 0+.
From Lemma 4.1 and Assumption A1, It follows that there exists subsequence

of {xk} corresponding to {hk}, without loss of generality, we still denote it
by {xk}, such that xk → x̄. This together with (4.2) implies that ∇ψε̃(x̄) =
∇Φε̃(x̄)Φε̃(x̄)

T 6= 0. By the rule of defining hk in step5, we have

ψε̃(x
k)− ψε̃(x

k + dk) < r(−∇ψε̃(x
k)T dk − 1

2
dTk∇Φε̃(x

k)∇Φε̃(x
k)T dk) (4.3)

where dk = −hk(hk∇Φε̃(x
k)∇Φε̃(x

k)T + I)−1∇ψε̃(x
k). Obviously, ‖dk‖ → 0 as

hk → 0+. Thus we have by using (4.3) that

ψε̃(x
k)− ψε̃(x

k − hkG
−1
k ∇Φε̃(x

k)

hk
< rλk − r

2
hkλ

2
k

where Gk = hk∇Φε̃(x
k)∇Φε̃(x

k)T + I, and λk = ∇ψε̃(x
k)TG−1

k ∇ψε̃(x
k). Let

hk → 0+ on the above inequality, we obtain by using Lemma 4.1 and Assumption
A1 that

∇ψε̃(x̄)
T∇ψε̃(x̄) ≤ r∇ψε̃(x̄)

T∇ψε̃(x̄)

This is a contradiction, since 0 < r < 1 and ∇ψε̃(x̄) 6= 0.
Case 2. there exists a constant c > 0 such that hk ≥ c for all k.
Define the index set S = {k|rk ≥ r}. Under Case 2, we claim that the set S is

infinite. Suppose that this assertion does not hold, then there exists an integer
ks > 0 such that

rk < r, ∀k ≥ ks

This together with the rule of step 2 implies that hk+1 = 1
2hk for all k ≥ ks, i.e.,

hk → 0+ (k → +∞)

This contradicts the assumption of Case 2. Hence the set S is infinite.
By Lemma 3.1 and (3.1), we have that for all k ∈ S,

Aredk = ψε̃(x
k)− ψε̃(x

k+1) ≥ rPredk
≥ r

2d
T
k (∇Φε̃(x

k)∇Φε̃(x
k)T + 1

hk
I)dk

= − r
2 (∇Φε̃(x

k)Φε̃(x
k))T dk ≥ 0

(4.4)
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From (3.4), (3.9) and the rules of step 2, it follows that the sequence {ψε̃(x
k)} is

monotone decreasing. Moreover, it is bounded below. Thus lim
k→∞

ψε̃(x
k) exists.

This together with (4.4) implies that

(∇Φε̃(x
k)Φε̃(x

k))T dk → 0, as k → ∞, k ∈ S (4.5)

On the other hand, it follows from Assumption A1 that there exists a constant
C > 0 such that

‖∇Φε̃(x
k)∇Φε̃(x

k)T ‖ ≤ C

Let Ak = ∇Φε̃(x
k)∇Φε̃(x

k)T + 1
hk

I. Then we have by (3.1) and (4.2) that

‖(∇Φε̃(x
k)Φε̃(x

k))T dk‖ = (∇Φε̃(x
k)Φε̃(x

k))TA−1
k (∇Φε̃(x

k)Φε̃(x
k))

≥ ‖∇Φε̃(x
k)Φε̃(x

k)‖2

‖Ak‖
≥ ε2

C+ 1
c

.

a contradiction to (4.5)
Since both Case 1 and Case 2 lead to a contradiction, (4.1) is proven. This

proof is complete. 2

Based on the above conclusions, we now analyze the global convergence of
Algorithm STR.

Lemma 4.3. Assume that F is a P0 function. If Assumption A1 holds, then
the index set K defined by (3.6) is infinite, and

lim
k→∞

εk = 0, lim
k→∞

Φ(xk) = 0, and lim
k→∞

Φεk(x
k) = 0

Proof. We first prove that the set K is infinite. By contradiction, assume that

K is finite. Let k̂ be the largest number in K. Then for all k ≥ k̂, εk = εk̂ and
βk = βk̂. Denote

ε̃ = εk̂, β̃ = βk̂, q(x) = Φ(xk)− Φε̃(x
k)

Then for all k ≥ k̂, we have

‖Φ(xk)‖ > max{ηβ̃, µ−1‖q(xk)‖} (4.6)

and
Φ(xk) = Φε̃(x

k) + q(xk) (4.7)

From Lemma 4.2 and Assumption A1, it follows that there exists at least an
accumulation point x̄ ∈ L0 of {xk} such that

∇ψε̃(x̄) = 0 (4.8)

Assume that this subsequence {xk}k∈K1 converges to x̄. By (4.8) and Lemma
3.2, we have

{Φε̃(x
k)}k∈K1 → Φε̃(x̄) = 0

Hence there exists k̃ ≥ k̂ such that for all k ∈ K1 with k ≥ k̃

‖Φε̃(x
k)‖ ≤ (1− µ)ηβ̃ (4.9)
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This together with (4.6) and (4.7) implies that for all k ∈ K1 with k ≥ k̃

‖Φε̃(x
k)‖ ≤ (1− µ)‖Φ(xk)‖ ≤ (1− µ)(‖Φε̃(x

k)‖+ ‖q(xk)‖)
i.e.,

‖Φε̃(x
k)‖ < (µ−1 − 1)‖q(xk)‖ (4.10)

which means

‖Φ(xk)‖ ≤ ‖Φε̃(x
k)‖+ ‖q(xk)‖ < µ−1‖q(xk)‖, ∀k ∈ K1 and k ≥ k̃

This is contradiction to (4.6). Hence the set K is infinite.
Next, {εk} → 0 follows immediately from the updating rule of εk and the fact

that the set K is infinite. Moreover, similar to the proof of Proposition 4.1 in
Ref[6], we deduce

‖Φ(xk)‖ ≤ γj(1 + µ)‖Φ(x0)‖, as kj ≤ k < kj+1. (4.11)

where γ = max{1
2 , η} and kj is the largest number in K such that kj ≤ k. Since

the set K is infinite, it follows from (4.11) and (3.7) that

lim
k→∞

Φ(xk) = 0, and lim
k→∞

Φεk(x
k) = 0

This proof is complete. 2

Remark 4.2. In fact, Lemma 4.3 is still true if Assumption A1 is replaced by
the condition that there exists at least an accumulation point in the sequence
{xk}. Here we omit its proof, since it is similar to the proof of Lemma 4.3 by
slight modification.

As a consequence of the above Lemma 4.3, we get the following global con-
vergence result.

Theorem 4.4. Assume that F is a P0 function and Assumption A1 holds.
Then every accumulation point of the sequence {xk} generated by Algorithm
STR is the solution of NCP(1.1).

5. Superlinear convergence

In this section, we will analyze the local convergence of Algorithm STR under
the following assumption.

A2 There exists m > 0 such that

dT (∇Φεk(x
k)∇Φεk(x

k)T +
1

hk
I)d ≥ m‖d‖2, ∀d ∈ Rn, ∀k = 1, 2, · · · .

We first give some useful results.

Lemma 5.1. Suppose that F is a P0 function and that the set K2 is an infinite
subset of the index set K such that {xk}k∈K2 converges to x∗. Suppose also that
Assumption A1 holds. If all V ∈ ∂CΦ(x

∗) are nonsingular, then there exists
M > 0 and kM > 0 such that for all k ≥ kM ,

‖(∇Φεk(x
k))‖ ≤ M, ‖(∇Φεk(x

k))−1‖ ≤ M (5.1)
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Proof. Note that for any x ∈ Rn, the set ∂CΦ(x) is compact, see Ref[1]. Hence
there exists Vk ∈ ∂CΦ(x

k) such that

dist(Φ
′
εk
(xk), ∂CΦ(x

k)) = ‖Φ′
εk
(xk)− Vk‖

which, together with (3.8), implies that for all k ∈ K2, we have

‖Φ′
εk
(xk)− Vk‖ ≤ νβk (5.2)

By Lemma 4.3, we have {βk} → 0. Combined with the nonsingularity of all
V ∈ ∂CΦ(x

∗) and the upper semicontinuity of ∂CΦ(·) at x∗, it follows from (5.2)
that there exist M > 0 and kM > 0 such that for all k ∈ K2 with k ≥ kM ,

‖(Φ′
εk
(xk))−1‖ ≤ M and ‖(∇Φεk(x

k))‖ ≤ M

This proof is complete. 2

Lemma 5.2 [2]. If A ∈ Rn×n is nonsingular and ‖A−1∆A‖ < 1, then the
matrix A+∆A is nonsingular and satisfies

‖(A+∆A)−1‖ ≤ ‖A−1‖
1− ‖A−1∆A‖ (5.3)

Lemma 5.3. LetAk = ∇Φεk(x
k)∇Φεk(x

k)T+ 1
hk

I. If the conditions of Lemma

5.1 hold, then we have that for hk ≥ 2M2

‖A−1
k ‖ ≤ 2M2, ∀k ∈ K, k ≥ kM (5.4)

Proof. By using (5.1) and hk ≥ 2M2, we have

‖ 1

hk
(∇Φεk(x

k)∇Φεk(x
k)T )−1‖ ≤ 1

2
, ∀k ∈ K, k ≥ kM

which, together with (5.1) and (5.3), implies that

‖A−1
k ‖ ≤ ‖∇Φεk(x

k)−1‖2
1− ‖ 1

hk
(∇Φεk(x

k)∇Φεk(x
k)T )−1‖ ≤ 2M2

for all k ∈ K with k ≥ kM . This proof is complete. 2

Lemma 5.4. Assume that F is a P0 function. If Assumptions A1 and A2
hold, then there exists a positive inter k̄ such that rk ≥ r for all k ≥ k̄.

Proof. From Lemma 4.3, (3.1), Assumptions A1 and A2, we have

‖dk‖ ≤ ‖(∇Φεk(x
k)∇Φεk(x

k)T +
1

hk
I)−1‖‖∇Φεk(x

k)Φεk(x
k)‖ −→ 0 (5.5)
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Thus it follows from Lemma 3.1(i) and Lemma 4.3 that for sufficiently large k

Aredk − rPredk = ψεk(x
k)− ψεk(x

k + dk)− rPredk
= −∇ψεk(x

k)T dk − 1
2d

T
k∇Φεk(x

k)∇Φεk(x
k)T dk

+o(‖dk‖2)− rPredk
= (1− r)Predk + o(‖dk‖2)
≥ (1−r)

2 dTk (∇Φεk(x
k)∇Φεk(x

k)T + 1
hk

I)dk + o(‖dk‖2)
≥ ‖dk‖2(m(1−r)

2 + o(‖dk‖2)
‖dk‖2 )

which implies that there exists a positive integer k̄ such that

Aredk ≥ rPredk, ∀k ≥ k̄

This shows that rk ≥ r for all k ≥ k̄. This proof is complete. 2

Remark 5.1. From Lemma 4.3 and Lemma 5.4, it follows that the set K̂ is
infinite, where K̂ = {k ∈ K|rk ≥ r}.

Using the above conclusions, we now analyze the local convergence rate of
Algorithm STR.

Theorem 5.5. Suppose that F is a P0 function. Suppose also that Assump-
tions A1 and A2 hold. If for an accumulation point x∗ of the subsequence
{xk}k∈K̂ , all V ∈ ∂CΦ(x

∗) are nonsingular, then we have
(i) x∗ is a solution of Φ(x) = 0, and thus a solution of NCP(1.1).
(ii) The whole sequence {xk} converges to x∗ superlinearly.

proof. By using Lemma 4.3, the conclusion (i) is obvious. In what follows we
show the validity of conclusion (ii).

Since ∂BΦ(x
∗) ⊆ ∂CΦ(x

∗), Proposition 2.5 in Ref[16] and Lemma 2.1 show
that x∗ is an isolated solution of Φ(x) = 0 and hence also of NCP(1.1). Fur-
thermore, theorem 4.4 implies that x∗ is also an isolated accumulation point
of the sequence {xk}. Thus there exists a constant δ > 0 such that x∗ is the
unique accumulation point of the sequence {xk} in neighbourhood N(x∗, δ) =
{x ∈ Rn| ‖x− x∗‖ ≤ δ}.

Set

K0 = {k ∈ K̂| xk ∈ N(x∗, δ)}
In view of Lemma 4.3 and Remark 5.1, it is obvious that K0 is infinite and
{xk}k∈K0 converges to x∗. By Lemma 5.1 and Lemma 5.4, there exist M > 0

and k̃ ∈ K0 such that for all k ∈ K0 with k ≥ k̃,

rk ≥ r, ‖(Φ′
εk
(xk))−1‖ ≤ M and ‖∇Φεk(x

k)‖ ≤ M,

and (5.2) with some Vk ∈ ∂CΦ(x
k) holds. Furthermore, it follows from the rule

of step 2 and Lemma 5.4 that

lim
k→∞

hk = +∞ (5.6)
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Let Ak = ∇Φεk(x
k)∇Φεk(x

k)T + 1
hk

I. Then it follows from Lemma 5.1, Lemma

5.3, Lemma 2.2, (3.1) and (5.6) that for all k ∈ K0 with k ≥ k̃,

‖xk+1 − x∗‖ = ‖xk − x∗ −A−1
k ∇Φεk(x

k)Φεk(x
k)‖

≤ ‖A−1
k ‖ · ‖Ak(x

k − x∗)−∇Φεk(x
k)Φεk(x

k)‖
≤ ‖A−1

k ‖‖∇Φεk(x
k)‖‖(∇Φεk(x

k)T − Vk)(x
k − x∗)‖

+‖A−1
k ‖‖∇Φεk(x

k)‖‖Vk(x
k − x∗)− Φ(xk) + Φ(x∗)‖

+‖A−1
k ‖‖∇Φεk(x

k)‖‖Φ(xk)− Φεk(x
k)‖+ ‖A−1

k
‖‖xk−x∗‖
hk≤ 2M3(vβk‖xk − x∗‖+ o(‖xk − x∗‖) + κ

√
εk)

+o(‖xk − x∗‖)
(5.7)

By the local Lipschitz continuity of Φ, for all k → ∞ and K ∈ K0,

βk = ‖Φ(xk)‖ = O(‖xk − x∗‖)
and from (3.2),

εk = O(‖xk − x∗‖4)
Thus it follows from (5.7) that

‖xk+1 − x∗‖ = o(‖xk − x∗‖) as k → ∞, k ∈ K0 (5.8)

From (5.8) and the proof of theorem 3.1 in [11], we obtain

‖Φ(xk+1)‖ = o(‖Φ(xk)‖), as k → ∞, k ∈ K0 (5.9)

So there exists k̂ ≥ k̃ such that for all k ∈ K0 with k ≥ k̂,

‖xk+1 − x∗‖ ≤ δ and ‖Φ(xk+1)‖ ≤ η‖Φ(xk)‖ = ηβk

which implies that xk+1 ∈ N(x∗, δ) and k + 1 ∈ K. Since rk ≥ r, we deduce
k + 1 ∈ K0.

Repeating the above process, we may prove that k ∈ K0 for all k ≥ k̂. This
together with (5.8) implies that {xk} converges to x∗ superlinearly. 2

6. Numerical examples

To illustrate the computational behavior of the proposed algorithm STR, we
implement it with the code written in MATLAB 7.1. The testing is performed
on a PC computer with HPdx2810SE Pentium(R) Dual-Core CPU E5300 @
2.60GHZ 2.00GB. Throughout the computational experiments, the stop criteria
is ‖∇ψ(xk+1)‖ ≤ 10−6, the parameters used in Algorithm STR are chosen as
follows: η = 0.9, r = 0.01, µ = 0.5, ν = 0.9, and h0 = 100.

To validate the algorithm STR from a computational point of view, we com-
pare it with the algorithm denoted by YTR in Ref[6] and Jacobian smoothing
method denoted by JSM in Ref[1]. Algorithms YTR and JSM are implemented
in the same way. The used termination condition for the algorithm YTR is
‖∇ψ(xk+1)‖ ≤ 10−6 with the parameters η = 0.9, µ = 0.5, v = 0.9, ∆0 = 1,
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c1 = 0.75, c2 = 0.01, c3 = 0.5, c4 = 2, ∆min = 10−10. The used termina-
tion condition for the algorithm JSM is ‖Φ(xk+1)‖ ≤ 10−6 with the parameters

ρ = a = η = 0.5, γ = 0.9, δ = 0.25(1− a), κ =
√
2n.

Table 1. Test results for three different algorithm

Problem initial point STR Y TR JSM

P1 (1, 0, 1, 0)T 5/0.088596 5/0.086723 22/1.531659
(100, 0, 0, 0)T 6/0.093388 55/0.124041 28/1.963543

P2 (1, 2, 3)T 9/0.069986 11/0.088534 22/1.349413
(100, 100, 100)T 6/0.092930 22/0.090983 27/1.531170

P3 (1, 1, 1, 1)T 5/0.082463 5/0.089761 ∗∗
(100, 1, 15, 4)T 7/0.082941 11/0.089949 29/2.077492

P4 (0, 0, 0, 0, 0)T 129/0.094000 155/0.360000 ∗
(1, 1, 1, 1, 1)T 131/0.203000 144/0.344000 ∗

P5 (1, 1, 1, 1, 1)T 47/0.109637 11/0.088168 47/0.045222
(0, 0, 0, 0, 0)T 46/0.104076 16/0.091314 ∗∗

P6 ones(8, 1) 6/0.028983 21/0.088337 22/0.010210
ones(16, 1) 6/0.030522 16/0.087152 22/0.020398

P7 (0, 0)T 5/0.391620 4/0.315380 22/0.852860
(10, 10)T 5/0.403436 8/0.731152 23/1.071349

P8 (0, 0, 0, 0)T 6/1.028329 6/1.672262 23/1.608630
(1, 2, 3, 4)T 7/1.204731 596/75.590994 41/2.553601

P9 zeros(8, 1) 12/0.032583 16/0.089010 30/0.010203
zeros(16, 1) 7/0.032541 16/0.089457 40/0.020196

P10 zeros(300, 1) 5/1.042489 11/2.240013 465/56.845228
zeros(500, 1) 5/4.001045 11/8.880846 ∗

P11 (0, 0, 0)T 6/0.614638 6/0.602766 22/1.127613
(10, 10, 10)T 6/0.607659 10/1.051917 24/1.571039

P12 (0, 0, 0)T 6/0.553468 6/0.554196 22/1.039595
(10, 10, 10)T 6/0.698658 9/0.851529 ∗∗

P13 (0, 0, 0, 0)T 7/1.397530 7/1.032007 25/1.838657
(10, 10, 10, 10)T 8/1.573075 11/2.379361 27/1.970828

P14 (1, 1, 1)T 5/0.519001 7/1.187778 20/1.279688
(10, 10, 10)T 5/0.515478 8/1.676702 23/1.459699

P15 (1, 1, 1)T 5/0.509390 ∗∗ ∗∗
(10, 10, 10)T 6/0.580846 ∗∗ ∗∗

P16 zeros(300, 1) 5/1.253284 ∗ 26/5.138878
zeros(500, 1) 5/5.511264 ∗ 26/18.102833

P17 zeros(300, 1) 5/1.022114 7/2.097643 26/4.106432
zeros(500, 1) 5/3.894817 7/8.717575 26/17.654814

P18 zeros(20, 1) 8/5.985018 7/6.565590 25/10.201406
ones(20, 1) 8/5.942147 6/4.696455 23/8.818761

We choose 18 test problems for our experiments. The first 6 test problems
are chosen from Refs[17] and [18], which are given in Appendix. Other 12 test
problems are chosen from Ref[18] and Tests 7-18 correspond to Problems 1-12
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in Ref[18], respectively. Table 1 lists the numerical results which are give in the
form of k/CPU(s), where k and CPU(s) denote the the number of iteration and
the CPU time of algorithm, respectively. If the CPU time exceeds 300 seconds,
we denote it by the sign ∗. If the problem is unsolvable, we denote it by the sign
∗∗.

Comparing the numerical results of Algorithm STR with that of Algorithms
YTR and JSM, we find that there are quite a number of test problems for which
Algorithm STR performs better than Algorithms YTR and JSM, in the terms of
iterative numbers and CPU time. Therefore, we could say that Algorithm STR
is an efficient method in some sense.

While it would be unwise to draw some firm conclusions from the rather
limited numerical results, they indicate some promise for the new approach pro-
posed in this paper. Further improvement is expected for more sophisticated
implementation.
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Appendix

Test 1. Test function:

F (x) =




3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 3x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1
x2
1 + 3x2

2 + 2x3 + 3x4 − 3




Test 2. Test function:

F (x) =

(
x1 − 2
x2 − x3 + x3

2 + 3
x2 + x3 + 2x3

3 − 3

)

Test 3. Test function:

F (x) =




−x2 + x3 + x4

x1 − 4.5x3+2.7x4
x2+1

5− x1 − 0.5x3+0.3x4
x3+1

3− x1




Test 4. Test function:

F (x) =




x2
1 + x2

2 − x4

x2
2 + x2

5 − x3x4

−exp(2x3) + x4

exp(x5 − x1)− x4 + x2
2

1− x1 − x3




Test 5. Test function: F (x) = (F1(x), F2(x), · · · , F5(x))T , where

Fi(x) = 2(xi − i+ 2)exp(

5∑
j=1

(xj − j + 2)2), i = 1, 2, · · · , 5

Note that F is not a P0-function.

Test 6. Test function: F (x) = Mx+q, where M ∈ Rn×n and q ∈ Rn are defined as follows
Mii = 4(i− 1) + 1, i = 1, 2, · · · , n.
Mij = Mii + 1, j 6= i, i, j = 1, 2, · · · , n.
q = −(1, 1, · · · , 1)T
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