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GEGENBAUER WAVELETS OPERATIONAL MATRIX

METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

Mujeeb ur Rehman and Umer Saeed

Abstract. In this article we introduce a numerical method, named Ge-
genbauer wavelets method, which is derived from conventional Gegen-
bauer polynomials, for solving fractional initial and boundary value prob-
lems. The operational matrices are derived and utilized to reduce the lin-
ear fractional differential equation to a system of algebraic equations. We
perform the convergence analysis for the Gegenbauer wavelets method.

We also combine Gegenbauer wavelets operational matrix method with
quasilinearization technique for solving fractional nonlinear differential

equation. Quasilinearization technique is used to discretize the nonlinear
fractional ordinary differential equation and then the Gegenbauer wavelet
method is applied to discretized fractional ordinary differential equations.
In each iteration of quasilinearization technique, solution is updated by
the Gegenbauer wavelet method. Numerical examples are provided to
illustrate the efficiency and accuracy of the methods.

1. Introduction

Fractional differential equation is the generalization of the ordinary differ-
ential equation and is used to model the problems in many areas of science
and engineering such as fluid mechanics [19], dynamic of viscoelastic materials
[20], biosciences [23], electromagnetism [15] and continuum and statistical me-
chanics [24]. For most of the fractional differential equations, exact solutions
are not known. Transform methods can be used to solve fractional differential
equations exactly, but their applicability is limited to certain classes of lin-
ear fractional differential equations. Therefore different numerical method for
providing approximate solutions to classical differential equations are extended
to solve fractional differential equations. Some of these techniques include,
fractional difference method [25], differential transform method [2], Adomian
decomposition method [14] and homotopy analysis method [16].

The wavelet analysis is the decomposition of a function onto shifted and
scaled versions of the basic wavelet. The wavelet basis are orthogonal basis for
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L2(R) and are generated by the translation and dilatation of the basic wavelet.
They are compactly supported. The Haar wavelet [21, 31] is the simplest of
the orthonormal wavelets with compact support and was constructed by Haar
in 1909. Haar wavelet operational matrix of integration was first derived by
Chen et al. [7] to solve the differential equations. There are several other
wavelets which can be used to solve the differential equations. Some of these
include, Daubechies [8, 32], B-spline [9], Legendre [29, 35], Hermite [1, 33] and
Chebyshev [3, 17]. Legendre, Hermite and Chebyshev wavelets uses Legendre,
Hermite and Chebyshev polynomials as their basis functions, respectively.

Linearization is carried out by considering the first two terms in the Taylor′s
series expansion of the original nonlinear differential equation. This technique
is a generalized Newton-Raphson method for functional equations. It is also
known as the quasilinearization method. The quasilinearization technique not
only linearizes the nonlinear equation but also provides a sequence of functions
which in general converges rather rapidly to the solution of the original non-
linear equation. The main advantage of this technique is that the procedure
converges quadratically to the solution of the original equation, if there is con-
vergence at all. The method of quasilinearization developed by Bellman [4, 5]
and was first used to obtain a representation for the solution of the initial value
problem for the Riccati equation. Bellman and Kalaba [6] generalized these re-
sults and obtained a solution formula for a wide class of nonlinear first order
differential equations. Mohapatra et al. [26] established the existence, unique-
ness, and convergence results for general second order nonlinear boundary value
problems by using quasilinearization and monotone iterative methods. Devi et
al. [11] developed the method of quasilinearization for fractional differential
equations. Existence and uniqueness result for an initial value problem of frac-
tional differential equations using generalized quasilinearization technique is
obtained in [10].

Gegenbauer polynomials [12] or ultraspherical polynomials are orthogonal
polynomials on the interval [−1, 1] with respect to the weight function. They
generalize the Legendre and Chebyshev polynomials. In the present work, we
constructed the Gegenbauer wavelets by using the shifted Gegenbauer polyno-
mials as their basis functions. The interval [0, 1) is chosen to be the compact
support of Gegenbauer wavelets. The purpose of introducing the Gegenbauer
wavelets is to develop a numerical method for solving fractional differential
equations, which we named Gegenbauer wavelets method. Operational matri-
ces are derived and utilized for solving fractional initial and boundary value
problems. Boundary value problems are considerably more difficult to deal
with than the initial value problems. Gegenbauer wavelets method for bound-
ary value problems is more complicated than for initial value problems. We
need additional operational matrices for tackling the boundary conditions while
solving boundary value problems. We first discritize the nonlinear differential
equation by quasilinearization technique and then implement the Gegenbauer
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wavelet method on discretized differential equation. At each iteration of quasi-
linearization technique solution is updated by Gegenbauer wavelet method.
The method is implement on number of problems and numerical results are
compared with solutions obtained by some other numerical techniques [30, 37]
and exact solutions as well.

2. Preliminaries

We review basic definitions of fractional differentiation and fractional inte-
gration [27]:

1) Riemann-Liouville fractional integral operator of order α:
The Riemann-Liouville fractional order integral of order α ∈ R

+ is defined
as

(2.1) Iαa y(x) =
1

Γ(α)

∫ x

a

(x− t)α−1y(t)dt

for a < x ≤ b, and Iαa becomes zero for x = a.

2) Riemann-Liouville and Caputo fractional derivative operator of
order α:

The Riemann-Liouville fractional order derivative of order α ∈ R
+ is defined

as

(2.2) RD
α
a y(x) =

1

Γ(n− α)

( d

dx

)n
∫ x

a

(x− t)n−α−1y(t)dt

for a < x ≤ b, where n− 1 < α < n, n ∈ N and n = ⌈α⌉.
The Caputo fractional order derivative of order α ∈ R

+ is defined as

(2.3) CD
α
a y(x) =

1

Γ(n− α)

∫ x

a

(x − t)n−α−1
( d

dt

)n

y(t)dt

for a < x ≤ b, where n − 1 < α < n, n ∈ N and n = ⌈α⌉. RD
α
a and CD

α
a

becomes zero for x = a.

3. Gegenbauer polynomials and Gegenbauer wavelets

The Gegenbauer polynomials [12], or ultra spherical harmonics polynomials,
Cλ

m(x), of order m are defined, for λ > − 1
2 , m ∈ Z

+, on the interval [−1, 1]
and given by the following recurrence formulae,

Cλ
0 (x) = 1, Cλ

1 (x) = 2λx,

Cλ
m+1(x) =

1

m+ 1
(2(m+ λ)xCλ

m(x)− (m+ 2λ− 1)Cλ
m−1(x)), m = 1, 2, 3, . . . .

The Gegenbauer polynomials are orthogonal on [−1, 1] with respect to the

weight function w(x) = (1 − x2)λ−
1
2 as

∫ 1

−1

(1− x2)λ−
1
2Cλ

m(x)Cλ
n (x)dx = Lλ

mδmn, λ > −1

2
,
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where Lλ
m(x) = π21−2λΓ(m+2λ)

m!(m+λ)(Γ(λ))2 is the normalizing factor and δ is the Kronecker

delta function.
Gegenbauer polynomials generalize Legendre polynomials and Chebyshev

polynomials. For λ = 0 and λ = 1, we get Chebyshev polynomials of first and
second kind respectively and at λ = 1

2 we get Legendre polynomial.
Scaling and translation of the basic wavelet (mother wavelet) ψ(x) define

the basis

ψp,q(x) =
1

√

|p|
ψ
(x− q

p

)

, p, q ∈ R, p 6= 0,

where p is scaling parameter and q is the translation parameter. By restricting
p, q to discrete values as: p = p−k

0 , q = nq0p
−k
0 , where p0 > 1, q0 > 0 and

k, n ∈ N, we get the following family of discrete wavelets as

ψk,n(x) = (p0)
k
2ψ(pk0x− nq0).

The set of wavelets forms an orthogonal basis of L2(R). In particular, when
p0 = 2 and q0 = 1, then ψk,n forms an orthonormal basis. That is

〈 ψk,n(x), ψl,m(x)〉 = δklδnm.

The discrete wavelets transform is defined as

ψk,n(x) = (2)
k
2 ψ(2kx− n).

The Gegenbauer wavelets are defined on interval [0, 1) by

ψλ
n,m(x) =

{

1√
Lλ

m

2
k
2Cλ

m(2kx− n̂), n̂−1
2k ≤ t < n̂+1

2k ,

0, elsewhere,
(3.1)

where k = 1, 2, 3, . . ., is the level of resolution, n = 1, 2, 3, . . . , 2k−1, n̂ = 2n−
1, is the translation parameter, m = 0, 1, 2, . . . ,M − 1 is the order of the
Gegenbauer polynomials, M > 0. Corresponding to each λ > − 1

2 , we have a

different family of wavelets, i.e., when λ = 1
2 , we get Legendre wavelets [28],

ψ
1
2
n,m(x). Similarly for λ = 0 and λ = 1, we obtain the Chebyshev wavelet of

first [22] and second kind [36], respectively. In the present work, we utilize the
Gegenbauer wavelets at different values of λ > − 1

2 .
It is to be noted that the weight function for the Gegenbauer polynomials

have to be dilated and translated for the Gegenbauer wavelets, in order to
obtain the orthogonality of wavelets, as

(3.2) wn,k(x) = w(2kx− 2n+ 1) = (1− (2kx− 2n+ 1)2)λ−
1
2 .
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At fixed level of resolution k = p(say), we get

wn,p(x) =



































w1,p(x), 0 ≤ x < 1
2p−1 ,

w2,p(x),
1

2p−1 ≤ x < 2
2p−1 ,

w3,p(x),
2

2p−1 ≤ x < 3
2p−1 ,

...

w2p−1,p(x),
2p−1

−1
2p−1 ≤ x < 1.

(3.3)

Function approximations and the Gegenbauer wavelets matrix

We can expand any function f(x) ∈ L2[0, 1) into truncated Gegenbauer
wavelet series as,

(3.4) f(x) ≈
2k−1
∑

n=1

M−1
∑

m=0

aλnmψ
λ
n,m(x) = aλ

T
Ψλ(x),

where aλ and Ψλ are m̂× 1, (m̂ = 2k−1M), matrices, given by

aλ = [aλ10, a
λ
11, . . . , a

λ
1M−1, a

λ
20, a

λ
21, . . . , a

λ
2M−1, . . . , a

λ
2k−10, a

λ
2k−11, . . . ,

aλ2k−1M−1]
T ,

Ψλ(x) = [ψλ
1,0(x), ψ

λ
1,1(x), . . . , ψ

λ
1M−1(x), ψ

λ
2,0(x), ψ

λ
2,1(x), . . . , ψ

λ
2,M−1(x), . . . ,

ψλ
2k−1,0(x), ψ

λ
2k−1,1(x), . . . , ψ

λ
2k−1,M−1(x)]

T .

The collocation points for the Gegenbauer wavelets are taken as xi = 2i−1
2kM

,

where i = 1, 2, . . . , 2k−1M . The Gegenbauer wavelet matrix Ψλ
2k−1M,2k−1M is

given as

(3.5) Ψλ
2k−1M×2k−1M = [Ψλ(

1

2kM
),Ψλ(

3

2kM
), . . . ,Ψλ(

2kM − 1

2kM
)]

or

Ψλ
2k−1M×2k−1M =





























































ψλ
1,0(

1
2kM ) ψλ

1,0(
3

2kM ) · · · ψλ
1,0(

2kM−1
2kM )

ψλ
1,1(

1
2kM

) ψλ
1,1(

3
2kM

) · · · ψλ
1,1(

2kM−1
2kM

)
...

... · · ·
...

ψλ
1,M−1(

1
2kM

) ψλ
1,M−1(

3
2kM

) · · · ψλ
1,M−1(

2kM−1
2kM

)

ψλ
2,0(

1
2kM

) ψλ
2,0(

3
2kM

) · · · ψλ
2,0(

2kM−1
2kM

)

ψλ
2,1(

1
2kM ) ψλ

2,1(
3

2kM ) · · · ψλ
2,1(

2kM−1
2kM )

...
... · · ·

...

ψλ
2,M−1(

1
2kM

) ψλ
2,M−1(

3
2kM

) · · · ψλ
2,M−1(

2kM−1
2kM

)
...

... · · ·
...

ψλ
2k−1,0(

1
2kM ) ψλ

2k−1,0(
3

2kM ) · · · ψλ
2k−1,0(

2kM−1
2kM )

ψλ
2k−1,1(

1
2kM

) ψλ
2k−1,1(

3
2kM

) · · · ψλ
2k−1,1(

2kM−1
2kM

)
...

... · · ·
...

ψλ
2k−1,M−1(

1
2kM

) ψλ
2k−1,M−1(

3
2kM

) · · · ψλ
2k−1,M−1(

2kM−1
2kM

)





























































.
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In particular, we fix k = 2, M = 3, we have n = 1, 2 and m = 0, 1, 2, the
Gegenbauer wavelet matrix is given as

Ψλ
6×6 =

















ψλ
1,0(

1
12 ) ψλ

1,0(
3
12 ) ψλ

1,0(
5
12 ) ψλ

1,0(
7
12 ) ψλ

1,0(
9
12 ) ψλ

1,0(
11
12 )

ψλ
2,0(

1
12 ) ψλ

2,0(
3
12 ) ψλ

2,0(
5
12 ) ψλ

2,0(
7
12 ) ψλ

2,0(
9
12 ) ψλ

2,0(
11
12 )

ψλ
1,1(

1
12 ) ψλ

1,1(
3
12 ) ψλ

1,1(
5
12 ) ψλ

1,1(
7
12 ) ψλ

1,1(
9
12 ) ψλ

1,1(
11
12 )

ψλ
2,1(

1
12 ) ψλ

2,1(
3
12 ) ψλ

2,1(
5
12 ) ψλ

2,1(
7
12 ) ψλ

2,1(
9
12 ) ψλ

2,1(
11
12 )

ψλ
1,2(

1
12 ) ψλ

1,2(
3
12 ) ψλ

1,2(
5
12 ) ψλ

1,2(
7
12 ) ψλ

1,2(
9
12 ) ψλ

1,2(
11
12 )

ψλ
2,2(

1
12 ) ψλ

2,2(
3
12 ) ψλ

2,2(
5
12 ) ψλ

2,2(
7
12 ) ψλ

2,2(
9
12 ) ψλ

2,2(
11
12 )

















.

Compact support of the Gegenbauer wavelets is [ 2n−2
2k , 2n2k ), when n = 1, sup-

port of ψλ
1,m(x) is [0, 12 ), so ψ

λ
1,0(x), ψ

λ
1,1(x), ψ

λ
1,2(x) are zero at x = 7

12 ,
9
12 ,

11
12 . Similarly, for n = 2, support of ψλ

2,m(x) is [ 12 , 1), this implies that ψλ
2,0(x),

ψλ
2,1(x), ψ

λ
2,2(x) are zero at x = 1

12 ,
3
12 ,

5
12 , we have

Ψλ
6×6 =

















ψλ
1,0(

1
12 ) ψλ

1,0(
3
12 ) ψλ

1,0(
5
12 ) 0 0 0

0 0 0 ψλ
2,0(

7
12 ) ψλ

2,0(
9
12 ) ψλ

2,0(
11
12 )

ψλ
1,1(

1
12 ) ψλ

1,1(
3
12 ) ψλ

1,1(
5
12 ) 0 0 0

0 0 0 ψλ
2,1(

7
12 ) ψλ

2,1(
9
12 ) ψλ

2,1(
11
12 )

ψλ
1,2(

1
12 ) ψλ

1,2(
3
12 ) ψλ

1,2(
5
12 ) 0 0 0

0 0 0 ψλ
2,2(

7
12 ) ψλ

2,2(
9
12 ) ψλ

2,2(
11
12 )

















.

For fix value of λ, say λ = 5, we have

Ψ5
6×6 =



























2√
L5

0

C5
0 (

−2
3 ) 2√

L5
0

C5
0 (0)

2√
L5

0

C5
0 (

2
3 ) 0 0 0

0 0 0 2√
L5

0

C5
0 (

−2
3 ) 2√

L5
0

C5
0 (0)

2√
L5

0

C5
0 (

2
3 )

2√
L5

1

C5
1 (

−2
3 ) 2√

L5
1

C5
1 (0)

2√
L5

1

C5
1 (

2
3 ) 0 0 0

0 0 0 2√
L5

1

C5
1 (

−2
3 ) 2√

L5
1

C5
1 (0)

2√
L5

1

C5
1 (

2
3 )

2√
L5

2

C5
2 (

−2
3 ) 2√

L5
2

C5
2 (0)

2√
L5

2

C5
2 (

2
3 ) 0 0 0

0 0 0 2√
L5

2

C5
2 (

−2
3 ) 2√

L5
2

C5
2 (0)

2√
L5

2

C5
2 (

2
3 )



























or

Ψ5
6×6 =

















2.2746 2.2746 2.2746 0 0 0
0 0 0 2.2746 2.2746 2.2746

−5.2530 0 5.2530 0 0 0
0 0 0 −5.2530 0 5.2530

7.8628 −1.8145 7.8628 0 0 0
0 0 0 7.8628 −1.8145 7.8628

















.

Similarly, we get different Gegenbauer wavelet matrices for different value
of λ.
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The Gegenbauer wavelets operational matrix of fractional order in-
tegration

For simplicity, we write (3.4) as

(3.6) f(x) ≈
m̂
∑

i=1

aλi ψ
λ
i (x) = aλ

T
Ψλ(x),

where aλi = aλm,n, ψ
λ
i = ψλ

m,n(x). The index i is determined by the equation

i =M(n− 1)+m+1 and m̂ = 2k−1M . Also, aλ = [aλ1 , a
λ
2 , . . . , a

λ
m̂]T , Ψλ(x) =

[ψλ
1 (x), ψ

λ
2 (x), . . . , ψ

λ
m̂(x)]T .

An arbitrary function f ∈ L2[0, 1), can be expanded into block-pulse func-
tions [18] as

f(x) ≈
m̂−1
∑

i=0

fibi(x) = fTB(x),

where fi are the coefficients of the block-pulse function. The Gegenbauer
wavelets can be expanded into m-set of block-pulse Functions as

(3.7) Ψλ(x) = Ψλ
m̂×m̂B(x).

The fractional integral of block-pulse function vector can be written as

(3.8) (Iα
0 B)(x) = Fα

m̂×m̂ B(x),

where Fα
m̂×m̂ is given in [18] with

(3.9) Pλ,α
m̂×m̂ = Ψλ

m̂×m̂Fα(Ψλ
m̂×m̂)−1.

The Gegenbauer wavelets operational matrix of integration Pλ,α
m̂×m̂ of frac-

tional order α is constructed for different λ > − 1
2 and are utilize for solving

differential equations.
In particular, for k = 2, M = 3, α = 1.25, λ = 5, the Gegenbauer wavelet

operational matrix of fractional order integration P5, 1.25
6×6 is given by

P5, 1.25
8×8 =

















0.1592 0.4581 0.0551 0.0189 0.0028 −0.0017
0 0.1592 0 0.0551 0 0.0028

−0.2462 −0.0634 −0.0278 0.0090 0.0247 −0.0018
0 −0.2462 0 −0.0278 0 0.0247

0.3599 0.9284 0.0843 0.0406 −0.0061 −0.0041
0 0.3599 0 0.0843 0 −0.0061

















.

For k = 2, M = 3, α = 1.25, λ = 12, we have

P12, 1.25
6×6 =

















0.1580 0.4589 0.0374 0.0128 0.0014 −0.0008
0 0.1580 0 0.0374 0 0.0014

−0.3781 −0.0922 −0.0278 0.0090 0.0179 −0.0013
0 −0.3781 0 −0.0278 0 0.0179

0.8748 2.2912 0.1490 0.0672 −0.0049 −0.0048
0 0.8748 0 0.1490 0 −0.0049

















.
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For different values of λ, we get different families of Gegenbauer wavelets
matrices and their corresponding different operational matrices of fractional
order integration.

This phenomena makes calculations fast because the operational matrix

Pλ, α
m̂×m̂ contains many zero entries.

Operational matrix of fractional order integration for boundary value
problems

We drive another operational matrix of fractional integration to solve the
fractional boundary value problems. Let g(x) ∈ L2[0, b] be a given function,
b > 0. Then

(3.10) g(x)Iα0 ψ
λ
n,m(x) =

g(x)

Γ(α)

∫ b

0

(b − s)α−1ψλ
n,m(s)ds.

Since the Gegenbauer wavelets are supported on the intervals [ (2n−2)b
2k

, 2nb
2k

),
therefore

g(x)Iαb ψ
λ
n,m(x) =

g(x)2
k
2

√

(Lλ
m)Γ(α)

∫ 2nb

2k

(2n−2)b

2k

(b − s)α−1Cλ
m(2ks− 2n+ 1)ds,(3.11)

= g(x)V λ,α,b
n,m ,

where V λ,α,b
n,m = 2

k
2√

(Lλ
m)Γ(α)

∫

2nb

2k

(2n−2)b

2k

(b− s)α−1Cλ
m(2ks− 2n+ 1)ds.

Expand the equation (3.11) at the collocation points, xi = 2i−1
2kM , where

i = 1, 2, . . . , 2k−1M , to obtain

(3.12) Qg,λ,α,b
m̂×m̂ = Vλ,α,b

m̂×1B1×m̂,

where B1×m̂ = [g(x1), g(x2), . . . , g(xm̂)], Vλ,α,b
m̂×1 = [V λ,α,b

1,0 , V
λ,α,b
1,1 , . . . , V

λ,α,b
1M−1,

V
λ,α,b
2,0 , V

λ,α,b
2,1 , . . . , V

λ,α,b
2,M−1, . . . , V

λ,α,b

2k−1,0
, V

λ,α,b

2k−1,1
, . . . , V

λ,α,b

2k−1,M−1
]T ,

Qg,λ×α,b
m̂,m̂ =





























































V
λ,α,b
1,0 g( 1

2kM
) V

λ,α,b
1,0 g( 3

2kM
) · · · V

λ,α,b
1,0 g(2

kM−1
2kM

)

V
λ,α,b
1,1 g( 1

2kM
) V

λ,α,b
1,1 g( 3

2kM
) · · · V

λ,α,b
1,1 g(2

kM−1
2kM

)
...

... · · ·
...

V
λ,α,b
1,M−1g(

1
2kM

) V
λ,α,b
1,M−1g(

3
2kM

) · · · V
λ,α,b
1,M−1g(

2kM−1
2kM

)

V
λ,α,b
2,0 g( 1

2kM
) V

λ,α,b
2,0 g( 3

2kM
) · · · V

λ,α,b
2,0 g(2

kM−1
2kM

)

V
λ,α,b
2,1 g( 1

2kM
) V

λ,α,b
2,1 g( 3

2kM
) · · · V

λ,α,b
2,1 g(2

kM−1
2kM

)
...

... · · ·
...

V
λ,α,b
2,M−1g(

1
2kM

) V
λ,α,b
2,M−1g(

3
2kM

) · · · V
λ,α,b
2,M−1g(

2kM−1
2kM

)
...

... · · ·
...

V
λ,α,b

2k−1,0
g( 1

2kM
) V

λ,α,b

2k−1,0
g( 3

2kM
) · · · V

λ,α,b

2k−1,0
g(2

kM−1
2kM

)

V
λ,α,b

2k−1,1
g( 1

2kM
) V

λ,α,b

2k−1,1
g( 3

2kM
) · · · V

λ,α,b

2k−1,1
g(2

kM−1
2kM

)
...

... · · ·
...

V
λ,α,b

2k−1,M−1
g( 1

2kM
) V

λ,α,b

2k−1,M−1
g( 3

2kM
) · · · V

λ,α,b

2k−1,M−1
g(2

kM−1
2kM

)





























































.
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In particular, for λ = 7, k = 2, M = 3, α = 1.5, b = 1, and g(x) = x2, we
have

Qg,7,1.5,1
6×6 =



















V
7,1.5,1
1,0 g( 1

12 ) V
7,1.5,1
1,0 g( 3

12 ) V
7,1.5,1
1,0 g( 5

12 ) V
7,1.5,1
1,0 g( 7

12 ) V
7,1.5,1
1,0 g( 9

12 ) V
7,1.5,1
1,0 g(1112 )

V
7,1.5,1
2,0 g( 1

12 ) V
7,1.5,1
2,0 g( 3

12 ) V
7,1.5,1
2,0 g( 5

12 ) V
7,1.5,1
2,0 g( 7

12 ) V
7,1.5,1
2,0 g( 9

12 ) V
7,1.5,1
2,0 g(1112 )

V
7,1.5,1
1,1 g( 1

12 ) V
7,1.5,1
1,1 g( 3

12 ) V
7,1.5,1
1,1 g( 5

12 ) V
7,1.5,1
1,1 g( 7

12 ) V
7,1.5,1
1,1 g( 9

12 ) V
7,1.5,1
1,1 g(1112 )

V
7,1.5,1
2,1 g( 1

12 ) V
7,1.5,1
2,1 g( 3

12 ) V
7,1.5,1
2,1 g( 5

12 ) V
7,1.5,1
2,1 g( 7

12 ) V
7,1.5,1
2,1 g( 9

12 ) V
7,1.5,1
2,1 g(1112 )

V
7,1.5,1
1,2 g( 1

12 ) V
7,1.5,1
1,2 g( 3

12 ) V
7,1.5,1
1,2 g( 5

12 ) V
7,1.5,1
1,2 g( 7

12 ) V
7,1.5,1
1,2 g( 9

12 ) V
7,1.5,1
1,2 g(1112 )

V
7,1.5,1
2,2 g( 1

12 ) V
7,1.5,1
2,2 g( 3

12 ) V
7,1.5,1
2,2 g( 5

12 ) V
7,1.5,1
2,2 g( 7

12 ) V
7,1.5,1
2,2 g( 9

12 ) V
7,1.5,1
2,2 g(1112 )



















or

Qg,7,1.5,1
6×6 =

















0.0103 0.0924 0.2566 0.5029 0.8313 1.2419
0.0056 0.0505 0.1403 0.2750 0.4547 0.6792
−0.0007 −0.0059 −0.0165 −0.0324 −0.0535 −0.0799
−0.0013 −0.0115 −0.0321 −0.0629 −0.1039 −0.1552
0.0038 0.0341 0.0949 0.1859 0.3073 0.4591
0.0019 0.0174 0.0485 0.0950 0.1570 0.2345

















.

Theorem (Convergence of the Gegenbauer wavelets method). Let 2k−1, M →
∞. Then the series solution (3.4) converges to f(x).

Proof. Take the inner product of f(x) and ψλ
n,m(x) with respect to the weight

function, given in equations (3.2) and (3.3), we get

aλnm = 〈f(x), ψλ
n,m(x)〉 =

∫ 1

0

wn,k(x)f(x)ψ
λ
n,m(x)dx.

We introduce notations, p̂ = 2k−1, p = 2d−1, q̂ = M and q = N , where k and
d denotes the level of resolutions and, M and N represents the order of the
Gegenbauer polynomials.

Let Sλ
p̂,q̂ be a sequence of partial sums of aλijψ

λ
i,j(x), we prove that Sp̂,q̂ is a

Cauchy sequence in Hilbert space L2[0, 1) and then we show that Sλ
p̂,q̂ converges

to f(x), when p̂, q̂ → ∞.

First we show that Sλ
p̂,q̂ is a Cauchy sequence. For this purpose, let Sλ

p,q be

arbitrary sums of aλijψ
λ
i,j(x) with p̂ > p, q̂ > q.

(3.13)

‖Sλ
p̂,q̂ − Sλ

p,q‖2 = ‖
p̂

∑

i=p+1

q̂−1
∑

j=q

aλijψ
λ
i,j(x)‖2

= 〈
p̂

∑

i=p+1

q̂−1
∑

j=q

aλijψ
λ
i,j(x),

p̂
∑

r=p+1

q̂−1
∑

s=q

aλrsψ
λ
r,s(x)〉

=

p̂
∑

i=p+1

q̂−1
∑

j=q

p̂
∑

r=p+1

q̂−1
∑

s=q

aλija
λ
rs〈ψλ

i,j(x), ψ
λ
r,s(x)〉

=

p̂
∑

i=p+1

q̂−1
∑

j=q

|aλij |2.
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From the Bessel’s inequality, we have
∑

∞

i=1

∑

∞

j=0 |aλij |2 is convergent and
hence

‖Sλ
p̂,q̂ − Sλ

p,q‖2 → 0 as p̂, q̂, p, q → ∞.

This implies that Sλ
p̂,q̂ is a Cauchy sequence and it converges to, say, y(x) ∈

L2[0, 1). We need to show that y(x) = f(x),

(3.14)

〈y(x) − f(x), ψλ
i,j(x)〉 = 〈y(x), ψλ

i,j(x)〉 − 〈f(x), ψλ
i,j(x)〉

= lim
p̂,q̂→∞

〈Sλ
p̂,q̂, ψ

λ
i,j(x)〉 − aλij

= aλij − aλij

= 0.

Hence
∑p̂

i=1

∑q̂−1
j=0 a

λ
ijψ

λ
i,j(x) converges to f(x) as p̂, q̂ → ∞. �

4. Implementation and examples

We describe the algorithm by working out few examples. In this section,
we implement the Gegenbauer wavelets method to fractional initial as well as
boundary value problems.

Initial value problems

Example 1. Consider the following Bagley-Torvik equation,

(4.1)
b1D

2y(x) + bc2D
1.5y(x) + b3y(x) = f(x), x ≥ 0,

y(0) = 1, y′(0) = 1,

where f(x) = b3(x + 1), and the exact solution [28] is y(x) = x + 1. Apply
the Gegenbauer wavelet method to equation (4.1), we approximate the higher
order term by the Gegenbauer wavelets series as

(4.2) D2y(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnmψ
λ
n,m(x) = aλ

T
Ψλ(x).

Lower order derivatives are obtained by integrating (4.2) and use the initial
condition

(4.3) Dy(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnm(I10ψ
λ
n,m(x)) + 1 = aλ

T
Pλ,1Ψλ(x) + 1,

(4.4) y(x) =
2k−1
∑

n=1

M−1
∑

m=0

aλnm(I20ψ
λ
n,m(x)) + x+ 1 = aλ

T
Pλ,2Ψλ(x) + x+ 1,

(4.5) D1.5y(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnm(I0.50 ψλ
n,m(x)) = aλ

T
Pλ,0.5Ψλ(x).
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Substitute (4.2), (4.4), and (4.5) in equation (4.1), we get

(4.6)

2k−1
∑

n=1

M−1
∑

m=0

(b1a
λ
nmψ

λ
n,m(x) + b2a

λ
nm(I0.50 ψλ

n,m(x)) + b3a
λ
nm(I20ψ

λ
n,m(x))

= − b3(1 + x) + f(x), x ≥ 0.

Equation (4.6) at the collocation points, xi = 2i−1
2kM , where i = 1, 2, . . .,

2k−1M , and in vector notation, takes the following form by using equations
(3.5) and (3.9)

(4.7)
aλ

T
(b1Ψ

λ
m̂×m̂ + b2P

λ,0.5
m̂×m̂Ψλ

m̂×m̂ + b3P
λ,2
m̂×m̂Ψλ

m̂×m̂) = F, or

aλ
T
Uλ
m̂×m̂ = F,

where F = {−b3(1+xi)+f(xi)}2
k−1M

i=1 and Uλ
m̂×m̂ = (b1Ψ

λ
m̂×m̂+b2P

λ,0.5
m̂×m̂Ψλ

m̂×m̂

+b3P
λ,2
m̂×m̂Ψλ

m̂×m̂).
Consider b1 = b2 = b3 = 1 and λ = 17.5, k = 2, M = 4, we get

U17.5
8×8 =

























3.9117 4.6393 5.1779 5.6801 2.2699 2.0590 2.0610 2.1288
0 0 0 0 3.9117 4.6393 5.1779 5.6801

−17.8455 −9.2678 2.3847 15.8417 1.0869 0.1013 −0.1984 −0.3492
0 0 0 0 −17.8455 −9.2678 2.3847 15.8417

57.0389 14.3879 12.3357 65.5851 18.9272 16.3578 16.1898 16.6459
0 0 0 0 57.0389 14.3879 12.3357 65.5851

−147.2366 −25.9284 −21.4612 128.2630 8.4966 0.8268 −1.4405 −2.5715
0 0 0 0 −147.2366 −25.9284 −21.4612 128.2630

























,

F =
(

0 0 0 0 0 0 0 0
)

, a17.5
T
=

(

0 0 0 0 0 0 0 0
)

.

Substitute a17.5
T
in equation (4.4) to obtain

(4.8) y(x) = x+ 1,

which is the exact solution.

Example 2. Consider the following fractional differential equation with vari-
able coefficients,

(4.9)

gD2y(x) + b(x)cDαy(x) + c(x)Dy(x) + e(x)cDβy(x)

+ k(x)y(x) = f(x), 0 < β < 1, 1 < α < 2,

y(0) = 2, y′(0) = 0,

where g is a constant and f(x) = −g − b(x)
Γ(3−α)x

2−α − xc(x) − e(x)
Γ(3−β)x

2−β +

k(x)(2 − 1
2x

2), and the exact solution [13] is y(x) = 2− 1
2x

2.

Apply the Gegenbauer wavelets method to equation (4.9), we obtain

(4.10)
aλ

T
(gΨλ

m̂×m̂ +Pλ,2−α
m̂×m̂ Ψλ

m̂×m̂B +Pλ,1
m̂×m̂Ψλ

m̂×m̂C

+Pλ,2−β
m̂×m̂ Ψλ

m̂×m̂E +Pλ,2
m̂×m̂Ψλ

m̂×m̂K) = L,

and solution at the collocation points is given by

(4.11) Y = aλ
T
Pλ,2

m̂×m̂Ψλ
m̂×m̂ + 2,
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where

L = [f(x1)− 2k(x1), f(x2)− 2k(x2), . . . , f(xm̂)− 2k(xm̂)],

Y = [y(x1, y(x2), . . . , y(xm̂))]

and B, C, E and K are the diagonal matrices and are given by

B =











b(x1) 0 · · · 0
0 b(x2) · · · 0
...

...
. . .

...
0 0 · · · b(xm̂)











, C =











c(x1) 0 · · · 0
0 c(x2) · · · 0
...

...
. . .

...
0 0 · · · c(xm̂)











,

E =











e(x1) 0 · · · 0
0 e(x2) · · · 0
...

...
. . .

...
0 0 · · · e(xm̂)











and K =











k(x1) 0 · · · 0
0 k(x2) · · · 0
...

...
. . .

...
0 0 · · · k(xm̂)











,

where xi =
2i−1
2m̂ , i = 1, 2, . . . , m̂, are collocation points.

We consider g = 1, b(x) =
√
x, c(x) = ex, e(x) = x

1
4 , and k(x) = x

1
5 .

We fix α = 1.755, β = 0.333 and plot the exact solution and solution by the
Gegenbauer wavelets method at k = 5, M = 11, λ = 30, as shown in Figure 1,
along with the absolute error. Table 1 shows that absolute error reduces while
increasing k and M , as in convergence analysis.

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

x−axis

y(
x)

Comparison of Exact and Gegenbauer wavelet solution

Exact Solution

Gegenbauer Solution at α=1.755, β=0.333

0 0.2 0.4 0.6 0.8 1
2

3

4

5
x 10

−5

x−axis

A
bs

ol
ut

e 
E

rr
or

Figure 1. Exact solution and solution by the Gegenbauer
wavelet method by taking k = 5, M = 11, λ = 30, at β =
0.333 and α = 1.755.
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Table 1. Absolute error for different values of k and M , at
λ = 7 , and α = 1.8, β = 0.7.

x k = 2, M = 3 k = 4, M = 5 k = 6, M = 7 k = 7, M = 9
0.1 1.1894× 10−3 0.3059× 10−4 0.1174× 10−5 0.2017× 10−6

0.2 1.2516× 10−3 0.3553× 10−4 0.1496× 10−5 0.2709× 10−6

0.3 1.3127× 10−3 0.3969× 10−4 0.1767× 10−5 0.3289× 10−6

0.4 1.3649× 10−3 0.4304× 10−4 0.1989× 10−5 0.3765× 10−6

0.5 1.4015× 10−3 0.4563× 10−4 0.2164× 10−5 0.4145× 10−6

0.6 1.4233× 10−3 0.4753× 10−4 0.2298× 10−5 0.4439× 10−6

0.7 1.4333× 10−3 0.4883× 10−4 0.2396× 10−5 0.4656× 10−6

0.8 1.4331× 10−3 0.4960× 10−4 0.2462× 10−5 0.4806× 10−6

0.9 1.4242× 10−3 0.4993× 10−4 0.2501× 10−5 0.4901× 10−6

1.0 1.4079× 10−3 0.4991× 10−4 0.2517× 10−5 0.4948× 10−6

Boundary value problems

Example 3. Consider the following fractional boundary value problem,

(4.12)
cDαy(x) =c Dβy(x) + h(x), 1 < α ≤ 2, 0 < β ≤ 1,

y(0) = 0, y(1) = 0,

where h(x) = −ex−1 − 1, and the exact solution [30] is known at α = 2 and
β = 1, y(x) = x(1− ex−1).

Consider the Gegenbauer wavelet approximation of higher order derivative
term in Eq. (4.12)

(4.13) cDαy(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnmψ
λ
n,m(x).

Now to get the Gegenbauer wavelet series for lower order derivative terms
we integrate Eq. (4.13) and use the boundary condition, to get
(4.14)

y(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnm(Iα0 ψ
λ
n,m(x) − x( 1

Γ(α)

∫ 1

0

(1− s)α−1ψn,m(s)ds)),

cDβy(x) =

2k−1
∑

n=1

M−1
∑

m=0

aλnm(Iα−β
0 ψλ

n,m(x)

− Γ(2)
Γ(2−β)x

1−β( 1
Γ(α)

∫ 1

0

(1 − s)α−1ψn,m(s)ds)).
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Substitute Eqs. (4.13) and (4.14) in equation (4.12), we obtain

(4.15)

2k−1
∑

n=1

M−1
∑

m=0

aλnm(ψλ
n,m(x)− I

α−β
0 ψλ

n,m(x)

+ Γ(2)
Γ(2−β)x

1−β( 1
Γ(α)

∫ 1

0

(1− s)α−1ψn,m(s)ds)) = h(x).

Use equations (3.5), (3.9) and (3.12), we get

(4.16) aλ
T
(Ψλ

m̂×m̂ −Pλ,α−β
m̂×m̂ Ψλ

m̂×m̂ +Qg,λ,α,1
m̂×m̂ ) = H,

and solution at the collocation points is given by

(4.17) Y = aλ
T
Pλ,α

m̂×m̂Ψλ
m̂×m̂ − aλ

T
QR,λ,α,1

m̂×m̂ ,

where H = [h(x1), h(x2), . . . , h(xm̂)], and g = Γ(2)
Γ(2−β)x

1−β , R = x.

Solve the equation (4.16) for aλ
T
, and substitute it in (4.17) to get y(x),

at the collocation points. Choose λ = 5, k = 10, M = 3, the results obtained
by the Gegenbauer wavelet method yGWM is shown in Table 2 along with the
absolute error EGWM . It shows that Gegenbauer wavelet method provides
better results as compared to homotopy perturbation method yHPM [37] and
Haar wavelet method yHAAR [30]. We can get more accurate results while
increasing k or M or both. According to Figure 2, solution by the Gegenbauer
wavelet method at different values of α converge to the exact solution, when α
approaches to 2.

Table 2. Comparison of the Gegenbauer wavelet method
with homotopy perturbation and Haar wavelet method.

λ = 5, k = 10, M = 3
α = 2, β = 1

x yHPM [37] yHAAR[30] yGWM yExact EGWM

0.1 0.05934820 0.05934300 0.05934302 0.05934303 1.58953244e-8
0.2 0.11014318 0.11013418 0.11013419 0.11013421 1.97211689e-8
0.3 0.15103441 0.15102438 0.15102438 0.15102441 2.46505651e-8
0.4 0.18048329 0.18047531 0.18047531 0.18047535 3.08917651e-8
0.5 0.19673826 0.19673463 0.19673463 0.19673467 3.86865598e-8
0.6 0.19780653 0.19780792 0.19780792 0.19780797 4.83152341e-8
0.7 0.18142196 0.18142718 0.18142719 0.18142725 6.01022115e-8
0.8 0.14500893 0.14501532 0.14501532 0.14501540 7.44224910e-8
0.9 0.08564186 0.08564623 0.08564623 0.08564632 9.17089691e-8

Example 4. Consider the following fractional boundary value problem with
variable coefficients,

(4.18)

cDαy(x) + e(x)Dy(x) + b(x)cDβy(x)

+ c(x)y(x) = f(x), 1 < α ≤ 2, 0 < β < 1,

y(0) = 0, y(1) = 0,
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0 0.2 0.4 0.6 0.8 1
0
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0.1

0.15

0.2
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x−axis
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Solutions by Gegenbauer wavelet method 

Gegenbauer solution at α=1.5

Gegenbauer solution at α=1.7

Gegenbauer solution at α=1.9

Exact solution at α=2

Gegenbauer solution at α=2

Figure 2. Solution by the Gegenbauer wavelet method by
taking k = 4, M = 3, λ = 5, at β = 1 and different α.

where f(x) = Γ(α+1)− Γ(8)
Γ(8−β)x

7−α+e(x)(αxα−1−7x6)+b(x)( Γ(α+1)
Γ(α−β+1)x

α−β−
Γ(8)

Γ(8−β)x
7−β) + c(x)(xα − x7), and the exact solution depends on the order of

the equation (4.18), y(x) = xα − x7.

Apply the Gegenbauer wavelets method to equation (4.18), we get

(4.19)
aλ

T
(Ψλ

m̂×m̂ +Pλ,α−1
m̂×m̂ Ψλ

m̂×m̂E +Pλ,α−β
m̂×m̂ Ψλ

m̂×m̂B +Pλ,α
m̂×m̂Ψλ

m̂×m̂C

−Qe,λ,α,1
m̂×m̂ −Qg,λ,α,1

m̂×m̂ −Qh,λ,α,1
m̂×m̂ ) = F,

and solution at the collocation points is given by

(4.20) Y = aλ
T
Pλ,α

m̂×m̂Ψλ
m̂×m̂ − aλ

T
QR,λ,α,1

m̂×m̂ ,

where F = [f(x1), f(x2), . . . , f(xm̂)], Y = [y(x1, y(x2), . . . , y(xm̂))], e = e(x),

g = b(x)( Γ(2)
Γ(2−β)x

1−β), h = xc(x), R = x, and E, B and C are the diagonal

matrices and are given by

E =











e(x1) 0 · · · 0
0 e(x2) · · · 0
...

...
. . .

...
0 0 · · · e(xm̂)











, B =











b(x1) 0 · · · 0
0 b(x2) · · · 0
...

...
. . .

...
0 0 · · · b(xm̂)











and
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C =











c(x1) 0 · · · 0
0 c(x2) · · · 0
...

...
. . .

...
0 0 · · · c(xm̂)











,

where xi =
2i−1
2m̂ , i = 1, 2, . . . , m̂, are collocation points.
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0
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0.4

0.5
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0.7

x−axis

y(
x)

Solutions by Gegenbauer wavelet method 

Exact solution at α=1.3

Gegenbauer solution at α=1.3

Exact solution at α=1.5

Gegenbauer solution at α=1.5

Exact solution at α=1.7

Gegenbauer solution at α=1.7

Exact solution at α=1.9

Gegenbauer solution at α=1.9

Exact solution at α=2

Gegenbauer solution at α=2

Figure 3. Solution by the Gegenbauer wavelet method by
taking k = 5, M = 3, λ = 15, at β = 0.5 and different α.

We consider e(x) = sin(x), b(x) = ex, c(x) = x2 and fix the parameters
k = 5, M = 3, λ = 15. Exact solutions and solutions by Gegenbauer wavelet
method agrees at different values of α, and β = 0.5, as shown in Figure 3.

Example 5. Consider the fractional boundary value problem with nonzero
boundary conditions,

(4.21)
cDαy(x) + ex cDβy(x) + sin(x)y(x) = f(x), 1 < α ≤ 2, 0 < β ≤ 1,

y(0) = 1, y(1) = 2,

where f(x) = Γ(α+β+1)
Γ(β+1) xβ + ex

Γ(α+β+1)
Γ(α+1) xα + sin(x)(xα+β + 1), and the exact

solution, y(x) = xα+β + 1, depends on the order of the derivatives appearing

in equation (4.21). Let h(x) := − Γ(2)
Γ(2−β)x

1−βex − sin(x)(1 + x). Apply the

Gegenbauer wavelets method to equation (4.21), we get

(4.22) aλ
T
(Ψλ

m̂×m̂+Pλ,α−β
m̂×m̂Ψλ

m̂×m̂A+Pλ,α
m̂×m̂Ψλ

m̂×m̂B−Qe,λ,α,1
m̂×m̂ −Qg,λ,α,1

m̂×m̂ )=H,
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and solution at the collocation points is given by

(4.23) Y = aλ
T
Pλ,α

m̂×m̂Ψλ
m̂×m̂ − aλ

T
QR,λ,α,1

m̂×m̂ + Z,

where H = [f(x1)+h(x1), f(x2)+h(x2), . . . , f(xm̂)+h(xm̂)], Z = [x1+1, x2+

1, . . . , xm̂+1], Y = [y(x1), y(x2), . . . , y(xm̂)], e = x sin(x), g = ex( Γ(2)
Γ(2−β)x

1−β),

R = x, and A, B are the diagonal matrices and are given by

A =











ex1 0 · · · 0
0 ex2 · · · 0
...

...
. . .

...
0 0 · · · exm̂











, B =











sin(x1) 0 · · · 0
0 sin(x2) · · · 0
...

...
. . .

...
0 0 · · · sin(xm̂)











,

where xi =
2i−1
2m̂ , i = 1, 2, . . . , m̂, are collocation points.
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1.7

1.8

1.9

2
Solutions by Gegenbauer wavelet method

x

y

Exact solotion at α=1.3,β=0.3

Gegenbauer solution at α=1.3,β=0.3

Exact solotion at α=1.5,β=0.5

Gegenbauer solution at α=1.5,β=0.5

Exact solotion at α=1.8,β=0.8

Gegenbauer solution at α=1.8,β=0.8

Exact solotion at α=2,β=1

Gegenbauer solution at α=2,β=1

Figure 4. Solution by the Gegenbauer wavelet method by
taking k = 5, M = 3, λ = 3, at different α and β.

Exact solutions and solutions by Gegenbauer wavelet method at k = 5,
M = 3 and λ = 3, agrees at different α and β, as shown in Figure 4.

5. Gegenbauer wavelets quasilinearization method

In this section we focus on nonlinear differential equations. To handle the
nonlinearities in equation we use quasilinearization technique, then we solve
the linearised problem by Gegenbauer wavelets method.
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Convergence

Convergence of quasilinearization technique

Consider the nonlinear second order differential equation

(5.1) y′′(x) = f(y), y(0) = y(b) = 0.

Application of quasilinearization technique to equation (5.1) yields

(5.2) y′′r+1(x) = f(yr) + (yr+1 − yr)f
′(yr), yr+1(0) = yr+1(b) = 0.

Let y0(x) be some initial approximation. Each function yr+1(x) is a solution
of a linear equation (5.2), where yr is always considered known and is obtained
from the previous iteration.

According to [6] and letting

max
y

(|f(y)|, |f ′(y)|) = m <∞ and k = max
u

|f ′′(u)|,

we have

(5.3) max
x

|yr+1 − yr| ≤
b2 k

8

1− b2m
4

(max
x

(|yr − yr−1|)2.

This shows that quasilinearization technique has quadratic convergence, if there
is convergence at all.

Convergence of Gegenbauer wavelet quasilinearization technique

According to the convergence analysis of Gegenbauer wavelets method, as
derived in Section 3, we have

p̂
∑

i=1

q̂−1
∑

j=0

aλijψ
λ
i,j(x) converges to yr+1(x) as p̂, q̂ → ∞,

where p̂ = 2k−1 and q̂ = M . Since yr+1(x) is obtained at (r + 1)th iteration
of quasilinearization technique, according to convergence analysis of quasilin-
earization technique (5.3) which states that yr+1(x) converges to y(x) as r
approaches to infinity.

This implies that solution by Gegenbauer wavelet quasilinearization tech-
nique, yr+1(x), converges to y(x) as k, M and r approaches to ∞.

We describe the procedure of implementation of Gegenbauer wavelet quasi-
linearization technique for both nonlinear initial and boundary value problems.

5.1. Initial value problems

Consider the following nonlinear initial value problem

(5.4)
cD

αy = f(x, y,cD
βy, y′), 0 ≤ x ≤ η, 1 < α < 2, 0 < β < 1,

y(0) = A, y′(0) = B,
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where A and B are constants. Apply the quasilinearization technique to equa-
tion (5.4), we get
(5.5)

cD
αyr+1 − fy′

r
(x, yr,cD

βyr, y
′

r)y
′

r+1 − f
y
β
r
(x, yr ,cD

βyr, y
′

r)y
β
r+1

− fyr
(x, yr,cD

βyr, y
′

r)yr+1

= f(x, yr,cD
βyr, y

′

r))− yrfyr
(x, yr ,cD

βyr, y
′

r)− yβr fyβ
r
(x, yr,cD

βyr, y
′

r)

− y′rfy′

r
(x, yr,cD

βyr, y
′

r), yr+1(0) = A, y′r+1(0) = B, r ≥ 0,

where ∂f
∂yr

= fyr
(x, yr,cD

βyr, y
′

r),
∂f
∂y′

r
= fy′

r
(x, yr,cD

βyr, y
′

r) and
∂f

∂y
β
r

= f
y
β
r
(x,

yr,cD
βyr, y

′

r).
Implement the Gegenbauer wavelet method to the series of differential equa-

tion (5.5). Approximate the higher order derivative term in Gegenbauer wavelet
series as

(5.6) cD
αyr+1 =

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm ψλ

n,m(x).

Integrate the equation (5.6) and use the initial conditions, to obtain

(5.7) yr+1 =

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα0 ψ

λ
n,m(x)) +Bx+A.

Differentiation of equation (5.7) implies

(5.8)

y′r+1 =
2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα−1

0 ψλ
n,m(x)) +B,

cD
βyr+1 =

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα−β

0 ψλ
n,m(x)) +B

x1−β

Γ(2 − β)
.

Let

gr(x, yr,cD
βyr, y

′

r) = f(x, yr,cD
βyr, y

′

r)− yrfyr
(x, yr,cD

βyr, y
′

r)

− yβr fyβ
r
(x, yr,cD

βyr, y
′

r)− y′rfy′

r
(x, yr,cD

βyr, y
′

r)

and use equations (5.6), (5.7) and (5.8) in equation (5.5) to obtain
(5.9)

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm

[

ψλ
n,m(x) − fy′

r
(x, yr,cD

βyr, y
′

r)(I
α−1
0 ψλ

n,m(x))

− f
y
β
r
(x, yr,cD

βyr, y
′

r)(I
α−β
0 ψλ

n,m(x)) − fyr
(x, yr,cD

βyr, y
′

r)(I
α
0 ψ

λ
n,m(x))

]

= gr(x, yr,cD
βyr, y

′

r) +Bfy′

r
(x, yr,cD

βyr, y
′

r)

+Bf
y
β
r
(x, yr ,cD

βyr, y
′

r)
x1−β

Γ(2− β)
+ (Bx +A)fyr

(x, yr,cD
βyr, y

′

r).
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Let

Gr(x, yr,cD
βyr, y

′

r) = gr(x, yr ,cD
βyr, y

′

r) +Bfy′

r
(x, yr,cD

βyr, y
′

r)

+Bf
y
β
r
(x, yr,cD

βyr, y
′

r)
x1−β

Γ(2− β)

+ (Bx+A)fyr
(x, yr,cD

βyr, y
′

r).

Equation (5.9) at the collocation points xc(j) = η 2j−1
2kM , j = 1, 2, . . . , m̂, and in

vector notation, takes the following form by using equations (3.5) and (3.9)

(5.10)
aλ,r+1T (Ψλ

m̂×m̂ − F′

rP
λ,α−1
m̂×m̂ Ψλ

m̂×m̂ − Fβ
rP

λ,α−β
m̂×m̂ Ψλ

m̂×m̂

− FrP
λ,α
m̂×m̂Ψλ

m̂×m̂) = Kr,

where aλ,r+1 = [aλ,r+1
1 , a

λ,r+1
2 , . . . , a

λ,r+1
m̂ ] is an unknown vector,

Kr = [Gr

∣

∣

xc(1)
Gr

∣

∣

xc(2)
· · ·Gr

∣

∣

xc(m̂)
]

is known vector and Fr, F
′

r and Fβ
r are the diagonal matrices and are given by

Fr =













fyr

∣

∣

xc(1)
0 · · · 0

0 fyr

∣

∣

xc(2)
· · · 0

...
...

. . .
...

0 0 · · · fyr

∣

∣

xc(m̂)













,

F′

r =













fy′

r

∣

∣

xc(1)
0 · · · 0

0 fy′

r

∣

∣

xc(2)
· · · 0

...
...

. . .
...

0 0 · · · fy′

r

∣

∣

xc(m̂)













, and

Fβ
r =













f
y
β
r

∣

∣

xc(1)
0 · · · 0

0 f
y
β
r

∣

∣

xc(2)
· · · 0

...
...

. . .
...

0 0 · · · f
y
β
r

∣

∣

xc(m̂)













.

The notation fyr

∣

∣

xc(j)
is used to represent evaluation of fyr

at x = xc(j).

Gegenbauer coefficients, aλ,r+1 = [aλ,r+1
1 , a

λ,r+1
2 , . . . , a

λ,r+1
m̂ ] can be obtained

from equation (5.10) for each r ≥ 0 and use these in equations (5.6), (5.7) and
(5.8) to get the approximate values of cD

αyr+1, yr+1, y
′

r+1and cD
βyr+1 at the

collocation points, xc(j), j = 1, 2, . . . , m̂. In particular, for r = 0 we get a linear
differential equation in y1(x), from equation (5.5), and use equation (5.10) to

obtain aλ,1 = [aλ,11 , a
λ,1
2 , . . . , a

λ,1
m̂ ] which are used in (5.6), (5.7) and (5.8) to get

the approximate values of cD
αy1, y1, y

′

1and cD
βy1 at the collocation points.

Similarly, for r = 1 we obtain y2(x) and so on. In this way, we obtain a sequence
of approximations y1(x), y2(x), . . ..
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Test problem: Consider the following αth order fractional Van der Pol oscil-
lator problem
(5.11)
cDαy(x) + y′(x) + y(x) + y2(x)y′(x) = 2 cos(x)− cos3(x), 1 < α ≤ 2, x ≥ 0,

subject to the initial conditions

y(0) = 0, y′(0) = 1.

The exact solution, when α = 2, is given by y(x) = sin(x).
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1
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r=5, α=2
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A
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e 
E

rr
or

Exact Solution
Numerical Solution

Figure 5. Solution by the Gegenbauer wavelet quasilineariza-
tion method by taking k = 5, M = 5, λ = 7, at α = 2 and
r = 5.

Apply the Gegenbauer wavelet quasilinearization technique to equation
(5.11), we get Figures 5 and 6. Figure 5 shows the comparison of solution
by Gegenbauer wavelet quasilinearization technique with exact solution while
fixing order of differential equation (5.11), α = 2, level of resolution, k = 5,
and order of Gegenbauer polynomials, M = 5, with λ = 7.

Figure 6 indicates the solutions by Gegenbauer wavelet quasilinearization
technique at different values of α′s by using k = 4, M = 7, λ = 12 and r = 5.

5.2. Boundary value problems

Consider the fractional nonlinear boundary value problem

(5.12)
cD

αy = f(x, y,cD
βy, y′), 0 ≤ x ≤ η, 1 < α < 2, 0 < β < 1,

y(0) = γ1, y(η) = γ2.
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Solution at different order α

Exact Solution at α=2

Numerical Solution at α=2

Numerical Solution at α=1.8

Numerical Solution at α=1.6

Numerical Solution at α=1.4

Figure 6. Solution by the Gegenbauer wavelet quasilineariza-
tion method by taking k = 4, M = 7, λ = 12, at different
values of α and r = 5.

Implement the quasilinearization technique to equation (5.12), we get
(5.13)

cD
αyr+1 − fy′

r
(x, yr,cD

βyr, y
′

r))y
′

r+1 − f
y
β
r
(x, yr ,cD

βyr, y
′

r))y
β
r+1

− fyr
(x, yr,cD

βyr, y
′

r))yr+1

= f(x, yr,cD
βyr, y

′

r))− yrfyr
(x, yr,cD

βyr, y
′

r))− yβr fyβ
r
(x, yr,cD

βyr, y
′

r))

− y′rfy′

r
(x, yr,cD

βyr, y
′

r)), yr+1(0) = γ1, yr+1(η) = γ2, r ≥ 0.

Now apply the Gegenbauer wavelet method to the sequence of differential equa-
tion (5.13)

(5.14) cD
αyr+1 =

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm ψλ

n,m(x).

Integrate the equation (5.14) and use the boundary conditions to obtain
(5.15)

yr+1 =
2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα0 ψ

λ
n,m(x))

+
x

η
(γ2 − γ1 −

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (

1

Γ(α)

∫ η

0

(η − s)α−1ψn,m(s)ds)) + γ1.
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First and β order derivative of yr+1 can be obtained from equation (5.15) as
(5.16)

y′r+1 =
2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα−1

0 ψλ
n,m(x))

+
1

η
(γ2 − γ1 −

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (

1

Γ(α)

∫ η

0

(η − s)α−1ψn,m(s)ds)),

cD
βyr+1 =

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (Iα−β

0 ψλ
n,m(x)) +

x1−β

ηΓ(2− β)
(γ2 − γ1

−
2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm (

1

Γ(α)

∫ η

0

(η − s)α−1ψn,m(s)ds)) + γ1.

Use equations (5.14), (5.15) and (5.16) in equation (5.13) to obtain
(5.17)

2k−1
∑

n=1

M−1
∑

m=0

aλ,r+1
nm

[

ψλ
n,m(x) − fy′

r
(x, yr,cD

βyr, y
′

r)(I
α−1
x ψλ

n,m(x))

− f
y
β
r
(x, yr,cD

βyr, y
′

r)(I
α−β
0 ψλ

n,m(x)) − fyr
(x, yr,cD

βyr, y
′

r)(I
α
0 ψ

λ
n,m(x))

+ gr(x, yr,cD
βyr, y

′

r)(
1

Γ(α)

∫ η

0

(η − s)α−1ψn,m(s)ds)
]

= Qr(x, yr,cD
βyr, y

′

r),

where

Qr(x, yr,cD
βyr, y

′

r)

= f(x, yr,cD
βyr, y

′

r)− yrfyr
(x, yr ,cD

βyr, y
′

r)− yβr fyβ
r
(x, yr,cD

βyr, y
′

r)

− y′rfy′

r
(x, yr,cD

βyr, y
′

r) + (
fy′

r

η
(x, yr ,cD

βyr, y
′

r)

+ f
y
β
r
(x, yr,cD

βyr, y
′

r)
x1−β

ηΓ(2− β)
+ fyr

(x, yr,cD
βyr, y

′

r)
x

η
)(γ2 − γ1)

+ fyr
(x, yr,cD

βyr, y
′

r)γ1,

gr(x, yr,cD
βyr, y

′

r)

=
fy′

r

η
(x, yr,cD

βyr, y
′

r) + f
y
β
r
(x, yr,cD

βyr, y
′

r)
x1−β

ηΓ(2− β)

+ fyr
(x, yr,cD

βyr, y
′

r)
x

η
.

Equation (5.17) at the collocation points xc(j) = η 2j−1
2kM , j = 1, 2, . . . , m̂,

and in vector notation, takes the following form by using equations (3.5), (3.9)
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and (3.12)

(5.18)
aλ,r+1T (Ψλ

m̂×m̂ − F′

rP
λ,α−1
m̂×m̂ Ψλ

m̂×m̂ − Fβ
rP

λ,α−β
m̂×m̂ Ψλ

m̂×m̂

− FrP
λ,α
m̂×m̂Ψλ

m̂×m̂ +Qgr,λ,α,η
m̂×m̂ ) = Dr,

where aλ,r+1 = [aλ,r+1
1 , a

λ,r+1
2 , . . . , a

λ,r+1
m̂ ] is an unknown vector,

Dr = [Qr|xc(1), Qr|xc(2) · · ·Qr|xc(m̂)]

is known vector. We get aλ,r+1, for each r ≥ 0, from equation (5.18) and use it
to obtain approximate values of yr+1(x), y

′

r+1(x), cD
βyr+1(x) and cD

αyr+1(x)
at the collocation points.

Test problem: Consider the following αth order fractional nonlinear Lane
Emden boundary value problem

(5.19) cDαy(x)+
2

x
y′(x)−6y2(x) = 6+

2

x
−6(x2+x)2, 1 < α ≤ 2, 0 ≤ x ≤ 1,

subject to the boundary conditions

y(0) = 0, y(1) = 2.

The exact solution, when α = 2, is given by y(x) = x2 + x.
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Figure 7. Solution by the Gegenbauer wavelet quasilineariza-
tion method by fixing k = 5, M = 3, λ = 9, at α = 2 and
r = 3.

Implement the Gegenbauer wavelet quasilinearization technique to equation
(5.19) to get Figures 7 and 8. We fix the level of resolution, k = 5, order of
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Figure 8. Solution by the Gegenbauer wavelet quasilineariza-
tion method by using k = 3, M = 3, λ = 17.5, at different
values of α and r = 5.

Gegenbauer polynomial, M = 3, with λ = 9 and order of differential equation
(5.19), α = 2. The exact solution and solution by Gegenbauer wavelet quasi-
linearization technique at r = 3, are shown in Figure 7 along with the absolute
error.

Figure 8 is used to plot the solution by Gegenbauer wavelet quasilinearization
technique at different values of α by fixing λ = 17.5, M = 3, r = 5 and k = 3.

6. Conclusion

We have derived the Gegenbauer wavelets matrix, Ψλ
2k−1M,2k−1M , the Ge-

genbauer wavelets operational matrix of fractional order integration, Pλ,α
m̂×m̂,

and another Gegenbauer wavelets operational matrix of fractional order inte-

gration, Qg,λ,α,b
m̂×m̂ , which is used for solving boundary value problems. These

matrices are successfully utilized to solve the fractional initial and boundary
value problems with constant or variable coefficients.

According to the Table 1, we get more accurate results while increasing
k or M or both, as in convergence analysis. The solution of the fractional
order differential equation converge to the solution of integer order differential
equation as in Figure 2. Gegenbauer wavelets method is also compared with
the other numerical methods. Gegenbauer wavelets method is more accurate
than the homotopy perturbation method and Haar wavelet method, as shown
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in Table 2. Gegenbauer wavelet method is highly competitive in comparison
with the classical methods.

It is shown that Gegenbauer wavelet quasilinearization technique gives ex-
cellent results when applied to different fractional nonlinear initial boundary
value problems. The results obtained from Gegenbauer wavelet quasilineariza-
tion technique are in good agreement with exact solutions, as shown in Figures
5 and 7. The solution of the fractional nonlinear differential equation converge
to the solution of the integer nonlinear differential equation as shown in Fig-
ures 6 and 8. Different type of non-linearities can easily be handled by the
Gegenbauer wavelet quasilinearization technique.
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