Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.5.441

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory  

Cuong-Le, Thanh (Faculty of Civil Engineering, Ho Chi Minh City Open University)
Nguyen, Khuong D. (Department of Engineering Mechanics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT))
Le-Minh, Hoang (Faculty of Civil Engineering, Ho Chi Minh City Open University)
Phan-Vu, Phuong (Faculty of Civil Engineering, Ho Chi Minh City Open University)
Nguyen-Trong, Phuoc (Faculty of Civil Engineering, Ho Chi Minh City Open University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.12, no.5, 2022 , pp. 441-455 More about this Journal
Abstract
This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.
Keywords
isogeometric analysis; nonlinear bending; nonlocal strain gradient; porosity; S-FGM nanoplate;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Wang, Y.Q. and Zu, J.W. (2017a), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.   DOI
2 Wang, Y.Q. and Zu, J.W. (2017b), "Large-amplitude vibration of sigmoid functionally graded thin plates with porosities", Thin Wall. Struct., 119, 911-924. https://doi.org/10.1016/j.tws.2017.08.012.   DOI
3 Thanh, C. L., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
4 Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B, 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025.   DOI
5 Chen, D., Feng, K. and Zheng, S. (2019), "Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis", Eur. J. Mech. A Solids, 76, 25-35. https://doi.org/10.1016/j.euromechsol.2019.03.002.   DOI
6 Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Physica E, 84, 84-97. https://doi.org/10.1016/j.physe.2016.05.036.   DOI
7 Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.   DOI
8 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-57. http://doi.org/10.12989/scs.2020.35.1.147.   DOI
9 Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.   DOI
10 Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronautica, 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.   DOI
11 Chung, Y.L. and Chi, S. (2001), "The residual stress of functionally graded materials", J. Chin. Inst. Civil Hydraulic Eng., 13, 1-9.
12 Ebrahimi, F. and Barati, M.R. (2019), "Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects", Microsyst. Technol., 25(1), 175-187. https://doi.org/10.1007/s00542-018-3946-7.   DOI
13 Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.   DOI
14 Ebrahimi, F., Dabbagh, A. and Taheri, M. (2021), "Vibration analysis of porous metal foam plates rested on viscoelastic substrate", Eng. Comput., 37(4), 3727-3739. https://doi.org/10.1007/s00366-020-01031-w.   DOI
15 Lee, W.H., Han, S.C. and Park, W.T. (2012), "Nonlocal elasticity theory for bending and free vibration analysis of nano plates", J. Korea Acad. Ind. Coop. Soc., 13(7), 3207-3215. https://doi.org/10.5762/KAIS.2012.13.7.3207.   DOI
16 Levy, S. and Chiarito, P.T. (1942), Square Plate with Clamped Edges Under Normal Pressure Producing Large Deflections, National Advisory Committee for Aeronautics, U.S. Government Printing Office, U.S.A.
17 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.   DOI
18 Ebrahimi, F. and Seyfi, A. (2020). "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01069-w.   DOI
19 Arefi, M., Kiani, M. and Zamani, M.H. (2018), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.   DOI
20 Babu, B. and Patel, B.P. (2019), "A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff's plate theory", Compos. Part B Eng., 168, 302-311. https://doi.org/10.1016/j.compositesb.2018.12.066.   DOI
21 Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.   DOI
22 Fan, F., Safaei, B. and Sahmani, S. (2021), "Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis", Thin Wall. Struct., 159, 107231. https://doi.org/10.1016/j.tws.2020.107231.   DOI
23 Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res, 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.   DOI
24 He, L., Xu, J., Dekai, Z.H.O.U., Qinghai, Y.A.N.G. and Longqiu, L. (2018), "Potential application of functional micro-nano structures in petroleum", Petrol. Explo. Develop., 45(4), 745-753. https://doi.org/10.1016/S1876-3804(18)30077-6.   DOI
25 Xu, H., Wang, Y.Q. and Zhang, Y. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Arch. Appl. Mech., 91(12), 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.   DOI
26 Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.   DOI
27 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
28 Xiang, T., Hou, J., Xie, H., Liu, X., Gong, T. and Zhou, S. (2020), "Biomimetic micro/nano structures for biomedical applications", Nano Today, 35, 100980. https://doi.org/10.1016/j.nantod.2020.100980.   DOI
29 Zhuang, X., Guo, H., Alajlan, N., Zhu, H. and Rabczuk, T. (2021), "Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning", Eur. J. Mech. A Solids, 87, 104225. https://doi.org/10.1016/j.euromechsol.2021.104225.   DOI
30 Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.   DOI
31 Lee, W.H., Han, S.C. and Park, W.T. (2015), "A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation", Compos. Struct., 122, 330-342. https://doi.org/10.1016/j.compstruct.2014.11.047.   DOI
32 Jung, W.Y. and Han, S.C. (2013), "Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory", Math. Probl. Eng., 2013, 476131. https://doi.org/10.1155/2013/476131.   DOI
33 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.   DOI
34 Koiter, W. (1964), "Couple-stresses in the theory of elasticity, I and II, Prec", Roy. Netherlands Acad. Sci. B, 67, 0964.
35 Liu, S., Yu, T., Bui, T.Q. and Xia, S. (2020), "Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory", Compos. Struct., 172, 34-44. https://doi.org/10.1016/j.compstruct.2017.03.067.   DOI
36 Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.   DOI
37 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), "Functionally graded materials: design, processing and applications", Springer Science & Business Media, 5.
38 Mindlin, R.D. and N. (1968), "Eshel, On first strain-gradient theories in linear elasticity", Int. J. Solid. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.   DOI
39 Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2018), "Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory", Int. J. Struct. Stabil. Dynam., 18(4), 1850060. https://doi.org/10.1142/S0219455418500608.   DOI
40 Mindlin, R.D. (1963), "Microstructure in linear elasticity", Research Report No. AD0424156; Department of Civil Engineering and Engineering Mechanics, Columbia University of New York, New York, U.S.A.
41 Mueller, E., Drasar, C., Schilz, J. and Kaysser, W.A, (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.   DOI
42 Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Meth. Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.   DOI
43 Liu, H., Zhang, Q., Yang, X. and Ma, J. (2021), "Size-dependent vibration of laminated composite nanoplate with piezo-magnetic face sheets", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01285-y.   DOI
44 Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.   DOI
45 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
46 Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.   DOI
47 Khalaf, B.S., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219-235. https://doi.org/10.12989/amr.2019.8.3.219.   DOI
48 Singh, P.P. and Azam, M.S. (2020), "Free vibration and buckling analysis of elastically supported transversely inhomogeneous functionally graded nanoplate in thermal environment using Rayleigh-Ritz method", J. Vib. Control, 27(23-24), 2835-2847. https://doi.org/10.1177/1077546320966932.   DOI
49 Sobhy, M.A. (2015), "Comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102.   DOI
50 Rabczuk, T., Ren, H., Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua, 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567.   DOI
51 Zhang, Z., Li, H.N. and Yao, L.Q. (2021), "Vibration analysis of flexoelectric nanoplates based on nonlocal theory", Proceedings of the 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications, Zhengzhou, Henan Province, China, April.
52 Thanh, C.L., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2021), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.   DOI
53 Van Vinh, P. (2022), "Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates considering variable nonlocal parameter", Physica E, 135, 114951. https://doi.org/10.1016/j.physe.2021.114951.   DOI
54 Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlinear Dynam., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.   DOI
55 Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.   DOI
56 Emadi, M., Nejad, M.Z., Ziaee, S. and Hadi, A. (2021b), "Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method", Steel Compos. Struct., 39(5), 565-581. https://doi.org/10.12989/scs.2021.39.4.419.   DOI
57 Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.   DOI
58 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
59 Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.   DOI
60 Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.   DOI
61 Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F, (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.   DOI
62 Singh, S.J. and Harsha, S.P. (2020), "Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov's method", J. Sandw. Struct. Mater., 23(5), 1717-1760. https://doi.org/10.1177/1099636220904340.   DOI
63 Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Eur. Phys. J. Plus, 133(9), 1-11. https://doi.org/10.1140/epjp/i2018-12152-5.   DOI
64 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
65 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
66 Fattahi, A., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.   DOI
67 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. http://doi.org/10.12989/sss.2020.26.1.077.   DOI
68 Norouzzadeh, A., Ansari, R. and Rouhi, H. (2019), "Nonlinear bending analysis of nanobeams based on the nonlocal strain gradient model using an isogeometric finite element approach", Iran. J. Sci. Technol. Transact. Civil Eng., 43(1), 533-547. https://doi.org/10.1007/s40996-018-0184-2.   DOI
69 Gain, A.K., Zhang, L. and Liu, W. (2015), "Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders", Mater. Des., 67, 136-144. https://doi.org/10.1016/j.matdes.2014.11.028.   DOI
70 Ishihara, M., Yoshida, T., Ootao, Y. and Kameo, Y. (2020), "Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture", Struct. Eng. Mech., 75(1), 59-69. https://doi.org/10.12989/sem.2020.75.1.059.   DOI
71 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K.J.M.S. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng. A, 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.   DOI
72 Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells theory and analysis", CRC Press, New York, U.S.A.
73 Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2020), "Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL", Eng. Comput., 36(4), 1559-1578. https://doi.org/10.1007/s00366-019-00782-5.   DOI
74 Khazaei, P. and Mohammadimehr, M. (2020), "Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory", Struct. Eng. Mech., 76(1), 27-56. https://doi.org/10.12989/sem.2020.76.1.027.   DOI
75 She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct, 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.   DOI
76 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
77 Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Phys. Scripta, 95(6), 065204. https://doi.org/10.1088/1402-4896/ab793f.   DOI
78 Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment", Phys. Scripta, 95(5), 055218. https://doi.org/10.1088/1402-4896/ab7a38.   DOI
79 Singh, S.J. and Harsha, S.P. (2019), "Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment", Eur. J. Mech. A Solids, 76, 155-179. https://doi.org/10.1016/j.euromechsol.2019.04.005.   DOI
80 Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2020), "Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01208-3.   DOI
81 Shan, W., Deng, Z., Zhong, H., Mo, H., Han, Z., Yang, Z., Xiang, C., Li, S. and Liu, P. (2020), "Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates", Struct. Eng. Mech., 76(4), 551-559. https://doi.org/10.12989/sem.2020.76.4.551.   DOI
82 Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct,, 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.   DOI
83 Kim, J. and Reddy, J.N. (2015), "A general third-order theory of functionally graded plates with modified couple stress effect and the von Karman nonlinearity: theory and finite element analysis", Acta Mechanica, 226(9), 2973-2998. https://doi.org/10.1007/s00707-015-1370-y.   DOI
84 Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056.   DOI
85 Kaci, A., Bakhti, K., Hebali, H. and Tounsi, A. (2013), "Mathematical solution for nonlinear cylindrical bending of sigmoid functionally graded plates", J. Appl. Mech. Tech. Phys., 54(1), 124-131. https://doi.org/10.1134/S002189441301015X.   DOI
86 Kim, W.J., Lee, W.H., Park, W.T. and Han, S.C. (2014), "Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates", J. Korea Acad. Ind. Coop. Soc., 15(2), 1109-1117. https://doi.org/10.5762/KAIS.2014.15.2.1109.   DOI
87 Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of cnt nano-resonator based on nonlocal elasticity: The energy balance method", Rep. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.   DOI
88 Koizumi, M. (1993), "The concept of FGM", Ceram. Transact., 34, 3-10.
89 Teng, M.W. and Wang, Y.Q. (2021), "Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets", Thin Wall. Struct., 164, 107799. https://doi.org/10.1016/j.tws.2021.107799.   DOI
90 Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. An., 11(1), 385-414.   DOI
91 Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.   DOI
92 Thai, C.H., Ferreira, A.J.M. and Phung-Van, P. (2020), "A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates", Compos. Struct., 251, 112634. https://doi.org/10.1016/j.compstruct.2020.112634.   DOI
93 Thanh, C.L., Ferreira, A. and Wahab, M.A. (2019c), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. https://doi.org/10.1016/j.cma.2019.05.002.   DOI
94 Thai, T.Q., Zhuang, X. and Rabczuk, T. (2021), "A nonlinear geometric couple stress based strain gradient Kirchhoff-Love shell formulation for microscale thin-wall structures", Int. J. Mech. Sci., 196, 106272. https://doi.org/10.1016/j.ijmecsci.2021.106272.   DOI
95 Thang, P.T., Nguyen-Thoi, T. and Lee, J. (2016), "Closed-form expression for nonlinear analysis of imperfect sigmoid-FGM plates with variable thickness resting on elastic medium", Compos. Struct., 143, 143-150. https://doi.org/10.1016/j.compstruct.2016.02.002.   DOI
96 Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Methods Appl. Mech. Eng., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002.   DOI