• 제목/요약/키워드: nonlinear elliptic equations

검색결과 47건 처리시간 0.029초

ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM

  • Marah, Amine;Redwane, Hicham
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.385-401
    • /
    • 2021
  • We prove existence and regularity results of solutions for a class of nonlinear singular elliptic problems like $$\{-div\((a(x)+{\mid}u{\mid}^q){\nabla}u\)=\frac{f}{{\mid}u{\mid}^{\gamma}}{\text{ in }}{\Omega},\\{u=0\;on\;{\partial}{\Omega},$$ where Ω is a bounded open subset of ℝℕ(N ≥ 2), a(x) is a measurable nonnegative function, q, �� > 0 and the source f is a nonnegative (not identicaly zero) function belonging to Lm(Ω) for some m ≥ 1. Our results will depend on the summability of f and on the values of q, �� > 0.

Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems

  • Mokhtar Naceri
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.271-286
    • /
    • 2024
  • In this paper, we prove the existence of distributional solutions in the anisotropic Sobolev space $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ with variable exponents and zero boundary, for a class of variable exponents anisotropic nonlinear elliptic equations having a compound nonlinearity $G(x, u)=\sum_{i=1}^{N}(\left|f\right|+\left|u\right|)^{p_i(x)-1}$ on the right-hand side, such that f is in the variable exponents anisotropic Lebesgue space $L^{\vec{p}({\cdot})}(\Omega)$, where $\vec{p}({\cdot})=(p_1({\cdot}),{\ldots},p_N({\cdot})){\in}(C(\bar{\Omega},]1,+{\infty}[))^N$.

Trends in Researches for Fourth Order Elliptic Equations with Dirichlet Boundary Condition

  • Park, Q-Heung;Yinghua Jin
    • 한국수학사학회지
    • /
    • 제16권4호
    • /
    • pp.107-115
    • /
    • 2003
  • The nonlinear fourth order elliptic equations with jumping nonlinearity was modeled by McKenna. We investigate the trends for the researches of the existence of solutions of a fourth order semilinear elliptic boundary value problem with Dirichlet boundary Condition, ${\Delta}^2u{+}c{\Delta}u=b_1[(u+1)^{-}1]{+}b_2u^+$ in ${\Omega}$, where ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$.

  • PDF

Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force

  • Mirjavadi, Seyed Sajad;Nikookar, Mohammad;Mollaee, Saeed;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2020
  • The present paper deals with analyzing nonlinear forced vibrational behaviors of nonlocal multi-phase piezo-magnetic beam rested on elastic substrate and subjected to an excitation of elliptic type. The applied elliptic force may be presented as a Fourier series expansion of Jacobi elliptic functions. The considered multi-phase smart material is based on a composition of piezoelectric and magnetic constituents with desirable percentages. Additionally, the equilibrium equations of nanobeam with piezo-magnetic properties are derived utilizing Hamilton's principle and von-Kármán geometric nonlinearity. Then, an exact solution based on Jacobi elliptic functions has been provided to obtain nonlinear vibrational frequencies. It is found that nonlinear vibrational behaviors of the nanobeam are dependent on the magnitudes of induced electrical voltages, magnetic field intensity, elliptic modulus, force magnitude and elastic substrate parameters.

A PRIORI $L^2$-ERROR ESTIMATES OF THE CRANK-NICOLSON DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR PARABOLIC EQUATIONS

  • Ahn, Min-Jung;Lee, Min-A
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.615-626
    • /
    • 2010
  • In this paper, we analyze discontinuous Galerkin methods with penalty terms, namly symmetric interior penalty Galerkin methods, to solve nonlinear parabolic equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ${\ell}^{\infty}$ ($L^2$) error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

THE p-LAPLACIAN OPERATORS WITH POTENTIAL TERMS

  • Chung, Soon-Yeong;Lee, Hee-Soo
    • 대한수학회논문집
    • /
    • 제26권4호
    • /
    • pp.591-601
    • /
    • 2011
  • In this paper, we deal with the discrete p-Laplacian operators with a potential term having the smallest nonnegative eigenvalue. Such operators are classified as its smallest eigenvalue is positive or zero. We discuss differences between them such as an existence of solutions of p-Laplacian equations on networks and properties of the energy functional. Also, we give some examples of Poisson equations which suggest a difference between linear types and nonlinear types. Finally, we study characteristics of the set of a potential those involving operator has the smallest positive eigenvalue.

INFINITELY MANY SOLUTIONS FOR A CLASS OF MODIFIED NONLINEAR FOURTH-ORDER ELLIPTIC EQUATIONS ON ℝN

  • Che, Guofeng;Chen, Haibo
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.895-909
    • /
    • 2017
  • This paper is concerned with the following fourth-order elliptic equations $${\Delta}^2u-{\Delta}u+V(x)u-{\frac{k}{2}}{\Delta}(u^2)u=f(x,u),\text{ in }{\mathbb{R}}^N$$, where $N{\leq}6$, ${\kappa}{\geq}0$. Under some appropriate assumptions on V(x) and f(x, u), we prove the existence of infinitely many negative-energy solutions for the above system via the genus properties in critical point theory. Some recent results from the literature are extended.

NODAL SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS IN ANNULAR DOMAINS

  • Jang, Soon-Yeun;Pahk, Dae-Hyeon
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.387-398
    • /
    • 1998
  • We investigate the existence of radial nodal solutions of the elliptic equation $\Delta$u + h($\mid$x$\mid$)f(u) = 0, in annular domains. It is proved that for each integer k $\geq$ 1, there exist at least one radially symmetric solution which has exactly k nodes.

  • PDF