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ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR

LOWER ORDER TERM

Amine Marah and Hicham Redwane

Abstract. We prove existence and regularity results of solutions for a

class of nonlinear singular elliptic problems like− div
(

(a(x) + |u|q)∇u
)

=
f

|u|γ
in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of RN(N ≥ 2), a(x) is a measurable
nonnegative function, q, γ > 0 and the source f is a nonnegative (not

identicaly zero) function belonging to Lm(Ω) for some m ≥ 1. Our results

will depend on the summability of f and on the values of q, γ > 0.

1. Introduction

Let us consider the following boundary value problem− div
(

(a(x) + |u|q)∇u
)

=
f

|u|γ
in Ω,

u = 0 on ∂Ω,
(1)

where Ω is any bounded open subset of RN (N ≥ 2), q, γ > 0, f is a nonnegative
function belonging to some Lebesgue space Lm(Ω), m ≥ 1, and let a(x) be a
measurable function satisfying

0 < α ≤ a(x) ≤ β a.e. in Ω,(2)

where α, β are fixed real numbers.
In the linear case, problems of the form

− div
(
M(x)∇u

)
=

f

uγ
in Ω,

u > 0,

u = 0 on ∂Ω,

(3)
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where M is a bounded elliptic measurable matrix and f is smooth, have been
largely studied in the past by many authors. We refer to the pioneer work of
Stuart in [17], Crandall, Rabinowitz and Tartar in [6] and to the one of Lazer
and McKenna in [12].

The linear problem (3) has been deeply studied by Boccardo and Orsina in
[4] when the datum f belongs Lm(Ω), m ≥ 1. They have proved the existence
and regularity of solutions depending on the values of γ (by distinguishing
between the cases γ > 1, γ = 1 and γ < 1), and on the summability m of the
datum f . We emphasize that the main idea used by the authors in [4] in order

to deal with the singular term f
uγ is strongly based on the standard maximum

principle for elliptic equations which insures the strict positivity of the solutions
u. A non existence result was also given in [4] if f is a bounded Radon measure
concentrated on a Borel set E of zero capacity for every γ > 0. After that a
large number of papers was devoted to the study the existence of solutions of
problems like (1) in both linear and nonlinear cases and in different contexts,
for a review of such results we refer to [5, 7–10, 14, 15, 18] and the references
therein.

The motivations in studying problem (1) are mainly arise by the papers
[1] and [4]. In [1] (see also [2, 13]), the existence of solutions of the following
quasilinear elliptic problem of the type{

− div
(

(a(x) + |u|q)∇u
)

+ b(x)|u|p−1u|∇u|2 = f in Ω,

u = 0 on ∂Ω,
(4)

was investigated when f is nonnegative, f belongs to L1(Ω), a(x) satisfying
(2), 0 < µ ≤ b(x) ≤ ν, a.e. in Ω and p ≥ 2q (see also the improvements in [13],
when the existence of solutions has been proved without any restriction on p,
q and on the sign of f).

The aim of this paper is to prove the existence and regularity of solutions of
problem (1) depending on the summability of the datum f and the parameters
γ and q. As we will see, our growth assumption on the function a(x) + |u|q has
a regularization effect on the solution u and its gradient ∇u, allowing in some
cases to have finite energy solutions (i.e., solutions in H1

0 (Ω)) even if f belongs
to L1(Ω).

Notations. Hereafter, we will make use of two truncation functions Tk and
Gk: for every k ≥ 0 and r ∈ R, let

Tk(r) = min(k,max(r,−k)), Gk(r) = r − Tk(r).

For the sake of simplicity we will use when referring to the integrals the follow-
ing notation ∫

Ω

f =

∫
Ω

f(x) dx.

Finally, throughout this paper, C will indicate any positive constant which
depends only on data and whose value may change from line to line.
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Our aim is to prove the existence of weak solutions to problem (1). Here is
the definition of solutions we will consider.

Definition 1. A solution of (1) is a function u ∈W 1,1
0 (Ω) such that

∀ω ⊂⊂ Ω, ∃cω > 0 : u ≥ cω in ω,(5)

(a(x) + uq)|∇u| ∈ L1
loc(Ω),(6)

and that ∫
Ω

(a(x) + uq)∇u∇ϕ =

∫
Ω

fϕ

uγ
, ∀ϕ ∈ C1

c (Ω).(7)

2. Approximation of problem (1)

Let f be a nonnegative measurable function which belongs to some Lebesgue
space, let n ∈ N, fn = f

1+ 1
n f

and let us consider the following approximate

problem − div
(

(a(x) + uqn)∇un
)

=
fn

(un + 1
n )γ

in Ω,

un = 0 on ∂Ω,

(8)

Lemma 2.1. Problem (8) has a nonnegative weak solution un ∈ H1
0 (Ω) ∩

L∞(Ω).

Proof. Let k, n ∈ N be fixed, v ∈ L2(Ω) and define w = F (v) to be the unique
solution of − div

(
(a(x) + |Tk(v)|q)∇w

)
=

fn

(|v|+ 1
n )γ

in Ω,

w = 0 on ∂Ω,

using w as test function, we have using (2)

α

∫
Ω

|∇w|2 ≤ nγ+1

∫
Ω

|w|,

by Hölder inequality together with Poincaré inequality, it follows that∫
Ω

|w|2 ≤ Cnγ+1
(∫

Ω

|w|2
) 1

2

,

and so, ∫
Ω

|w|2 ≤ Cn
γ+1
2 .

Hence, the ball of radius Cn
γ+1
2 is invariant for F . Now, let us choose a

sequence vr → v in L2(Ω), then by Lebesgue convergence theorem:

fn

(|vr|+ 1
n )γ
→ fn

(|v|+ 1
n )γ

in L2(Ω),
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and the uniqueness of solution for linear problem yields that wr = F (vr) →
w = F (v) in L2(Ω). Therefore, we proved that F is continuous.

As we proved before, we have that∫
Ω

|∇F (v)|2 ≤ C(γ, n) for any v ∈ L2(Ω),

then, F (v) is relatively compact in L2(Ω), and by Schauder’s fixed point the-
orem, there exists un,k ∈ H1

0 (Ω) such that F (un,k) = un,k for each n, k fixed.
Moreover, un,k belongs to L∞(Ω) for all k, n ∈ N. Indeed, for t ≥ 1 fixed, using
Gt(un,k) as test function, we obtain, since un,k + 1

n ≥ t ≥ 1 on {un,k ≥ t}.∫
Ω

|∇Gt(un,k)|2 ≤
∫

Ω

fnGt(un,k),

and so, the result of [16] implies that un,k ∈ L∞(Ω). Furthermore, the estimate
of un,k in L∞(Ω) is independent from k ∈ N, then for k large enough and for
n fixed, un ∈ H1

0 (Ω) ∩ L∞(Ω) is the solution of the following approximate
problem − div

(
(a(x) + |un|q)∇un

)
=

fn

(|un|+ 1
n )γ

in Ω,

un = 0 on ∂Ω.

Since fn
(|un|+ 1

n )γ
≥ 0, the maximum principle implies that un ≥ 0 and this

conclude the proof. �

Lemma 2.2. The sequence un is such that for every ω ⊂⊂ Ω there exists cω
not depending on n such that

un ≥ cω > 0 in ω, ∀n ∈ N.

Proof. We emphasize that since we have an unbouded divergence operator, the
method developed in the proof of Lemma 2.2 in [4] does not apply directly
here, so, we use the idea in the proof of Lemma 2.3 of [2]. In order to do that,
let us first define for s ≥ 0 the function

Ψδ(s) =


1 if 0 ≤ s < 1,

1

δ
(1 + δ − s) if 1 ≤ s < δ + 1,

0 if s ≥ δ + 1.

We choose Ψδ(un)ϕ as test function in (8) with ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0,

then we have∫
Ω

(a(x) + uqn)∇un∇ϕ Ψδ(un) =
1

δ

∫
{1≤un≤δ+1}

(a(x) + uqn)|∇un|2 ϕ

+

∫
Ω

fn

(un + 1
n )γ

Ψδ(un)ϕ,



ON NONLINEAR ELLIPTIC EQUATIONS 389

thus, dropping the nonnegative term and letting δ goes to zero, we obtain∫
Ω

(a(x) + uqn)∇un∇ϕ χ{0≤un<1} ≥
∫

Ω

fn

(un + 1
n )γ

ϕχ{0≤un<1}.

Therefore∫
Ω

(a(x) + T1(un)q)∇T1(un)∇ϕ ≥
∫

Ω

f

2γ(1 + f)
χ{0≤un<1}ϕ

for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) ϕ ≥ 0.

Since f
2γ(1+f)χ{0≤un<1} is not identically zero and α ≤ a(x) + T1(un)q ≤

β+ 1, the strong maximum principle (see [11]) implies that there exists cω > 0
such that T1(un) ≥ cω in every ω ⊂⊂ Ω, and so un ≥ cω (since T1(un) ≤ un).
Therefore, Lemma 2.2 is completely proved. �

In order to prove the existence of solution for problem (1), we need a priori
estimates on the approximate solutions un, depending on f , q and γ, so that
we distinguish between different cases.

3. The case γ < 1

3.1. The case γ < 1 and q > 1 − γ

Lemma 3.1. Let un be the solution of problem (8), with γ < 1 and q > 1− γ.
Suppose that f belongs to L1(Ω). Then un is bounded in H1

0 (Ω).

Proof. For n fixed, we choose ε < 1
n and use

(
(un + ε)γ − εγ

)(
1 − (1 +

un)1−(q+γ)
)

as test function, then we have

γ

∫
Ω

(un + ε)γ−1
(

1− (1 + un)1−(q+γ)
)

(a(x) + uqn)|∇un|2(9)

+ (q + γ − 1)

∫
Ω

(
(un + ε)γ − εγ

)
(a(x) + uqn)

|∇un|2

(1 + un)q+γ

=

∫
Ω

fn

(un + 1
n )γ

(
(un + ε)γ − εγ

)(
1− (1 + un)1−(q+γ)

)
.

Dropping the first nonnegative term in the left hand side of (9), using (2) and
since ε < 1

n , we thus obtain

(q + γ − 1)

∫
Ω

(
(un + ε)γ − εγ

)
(α+ uqn)

|∇un|2

(1 + un)q+γ

≤
∫

Ω

fn

(un + 1
n )γ

(
(un + ε)γ − εγ

)(
1− (1 + un)1−(q+γ)

)
≤
∫

Ω

f,

and passing to the limit on ε

(10)

∫
Ω

(αuγn + uq+γn )
|∇un|2

(1 + un)q+γ
≤ C

∫
Ω

f.
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Since we have∫
{un≥1}

(α+ uq+γn )
|∇un|2

(1 + un)q+γ
≤
∫

Ω

(αuγn + uq+γn )
|∇un|2

(1 + un)q+γ
,

then it follows from (10) that

min(α, 1)

2q+γ−1

∫
{un≥1}

|∇un|2 ≤ min(α, 1)

∫
{un≥1}

1 + uq+γn

(1 + un)q+γ
|∇un|2 ≤ C

∫
Ω

f.

Hence ∫
{un≥1}

|∇un|2 ≤ C.(11)

Now, we choose (Tk(un) + ε)γ − εγ as test function with ε < 1
n in (8), using

(2) and dropping the nonnegative term, we get

α

∫
Ω

|∇Tk(un)|2

(Tk(un) + ε)1−γ ≤
∫

Ω

fn

(un + 1
n )γ

((Tk(un) + ε)γ − εγ) ≤
∫

Ω

f.

Therefore∫
Ω

|∇Tk(un)|2 =

∫
Ω

|∇Tk(un)|2

(Tk(un) + ε)1−γ (Tk(un) + ε)1−γ ≤ C(k + ε)1−γ .

Letting ε goes to zero

(12)

∫
Ω

|∇Tk(un)|2 ≤ Ck1−γ .

Combining (11) and (12) we obtain∫
Ω

|∇un|2 =

∫
{un>1}

|∇un|2 +

∫
{un≤1}

|∇un|2 ≤ C.

Hence, un is bounded in H1
0 (Ω) as desired. �

3.2. The case γ < 1 and q ≤ 1 − γ

In this case, we can not have an estimate of un in H1
0 (Ω), but in a larger

Sobolev space.

Lemma 3.2. Let un be the solution of problem (8), with γ < 1 and q ≤
1 − γ. Suppose that f belongs to L1(Ω). Then un is bounded in W 1,r

0 (Ω),

r = N(q+γ+1)
N−(1−(q+γ)) .

Proof. For fixed n, we choose ε < 1
n and use (un + ε)γ − εγ as test function,

we obtain, using (2)

γ
min(α, 1)

2q−1

∫
Ω

(un + ε)q+γ−1|∇un|2 ≤ γ
∫

Ω

(α+ uqn)(un + ε)γ−1|∇un|2

≤
∫

Ω

fn

(un + 1
n )γ

((un + ε)γ − εγ) ≤
∫

Ω

f,
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and by the Sobolev inequality

(13)
(∫

Ω

(
(un + ε)

q+γ+1
2 − ε

q+γ+1
2

)2∗) 2
2∗ ≤ C

∫
Ω

f.

Letting ε goes to zero, then (13) becomes

(14)

∫
Ω

u
2∗(q+γ+1)

2
n ≤ C.

Therefore, un is bounded in L
N(q+γ+1)
N−2 (Ω). Now if r < 2 as in the statement of

Lemma 3.2, we have by Hölder inequality∫
Ω

|∇un|r =

∫
Ω

|∇un|2

(un + ε)(1−(q+γ)) r2
(un + ε)(1−(q+γ)) r2

≤ C
(∫

Ω

(un + ε)(1−(q+γ)) r
2−r

)1− r2
.

Thanks to (14), the value of r is such that (1−(q+γ))r
2−r = N(q+γ+1)

N−2 , so that the
right hand side of the above inequality is bounded, and then un is bounded in

W 1,r
0 (Ω), r = N(q+γ+1)

N−(1−(q+γ)) as desired. �

Remark 3.3. As consequence of both Lemmas 3.1 and 3.2, there exist a subse-
quence (not relabeled) and a function u such that un converges weakly to u in

W 1,r
0 (Ω) (with r = N(q+γ+1)

N−(1−(q+γ)) ) and almost everywhere in Ω.

In the next Lemma we give an estimate of uqn|∇un| in Lρ(Ω) for any ρ < N
N−1 .

Lemma 3.4. Let un be the solution of problem (8), with γ < 1. Suppose that
f belongs to L1(Ω). Then uqn|∇un| is bounded in Lρ(Ω) for every ρ < N

N−1 .

Proof. For n fixed, we choose ε < 1
n and we take as test function

(
(T1(un) +

ε)γ − εγ
)(

1− (1 + un)1−λ
)

, with λ > 1, to obtain,

γ

∫
Ω

(T1(un) + ε)γ−1
(

1− (1 + un)1−λ
)

(a(x) + uqn)|∇T1(un)|2(15)

+ (λ− 1)

∫
Ω

(
(T1(un) + ε)γ − εγ

)
(a(x) + uqn)

|∇un|2

(1 + un)λ

=

∫
Ω

fn

(un + 1
n )γ

(
(T1(un) + ε)γ − εγ

)(
1− (1 + un)1−λ

)
.

Dropping the first nonnegative term in the left hand side of (15), using (2) and

the fact that α+ uqn ≥
min(α,1)

2q−1 (1 + un)q yield

(λ− 1)
min(α, 1)

2q−1

∫
Ω

(
(T1(un) + ε)γ − εγ

)
(1 + un)q−λ|∇un|2

≤
∫

Ω

fn

(un + 1
n )γ

(
(T1(un) + ε)γ − εγ

)(
1− (1 + un)1−λ

)
.
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Since ε < 1
n and λ > 1, we obtain

(16)

∫
Ω

(
(T1(un) + ε)γ − εγ

)
(1 + un)q−λ|∇un|2 ≤ C

∫
Ω

f.

Letting ε goes to zero, then (16) becomes

(17)

∫
{un>1}

(1 + un)q−λ|∇un|2 ≤
∫

Ω

T1(un)γ(1 + un)q−λ|∇un|2 ≤ C
∫

Ω

f.

Combining (12) and (17) lead to∫
Ω

(1 + un)q−λ|∇un|2 =

∫
{un>1}

(1+un)q−λ|∇un|2+

∫
{un≤1}

(1+un)q−λ|∇un|2

≤ C.

Now let us set ρ = N(2+q−λ
N(q+1)−(λ+q) , using the previous result together with Hölder

inequality, we thus have∫
Ω

uqρn |∇un|ρ ≤
∫

Ω

(1 + un)
ρ(q+λ)

2
|∇un|ρ

(1 + un)
ρ(λ−q)

2

≤ C
(∫

Ω

(1 + un)
ρ(q+λ)
2−ρ

) 2−ρ
2

,

and the Sobolev inequality yields that(∫
Ω

uρ
∗(q+1)
n

) ρ
ρ∗ ≤ C

(∫
Ω

u
ρ(q+λ)
2−ρ

n

) 2−ρ
2

,

the previous choice of ρ implies that ρ∗(q + 1) = ρ(q+λ)
2−ρ , and since λ > 1, we

obtain an estimate of uqn|∇un| in Lρ(Ω) for every ρ < N
N−1 , as desired. �

In order to pass to the limit in the approximate equations, the almost ev-
erywhere convergence of the ∇un to ∇u is required, this result will be proved
following the same techniques as in [2] (see also [3, 13]).

Lemma 3.5. The sequence {∇un} converges to ∇u a.e..

Proof. Let ϕ ∈ C1
c (Ω), ϕ ≥ 0, ϕ ≡ 1 on ω ⊂⊂ Ω and use Th(un − Tk(u))ϕ as

test function in (8), we thus have thanks to Lemmas 2.2 and 3.4∫
Ω

(a(x) + uqn)|∇Th(un − Tk(u))|2 ϕ

≤ Ch‖∇ϕ‖L∞(Ω) + h‖ϕ‖L∞(Ω)
1

cγω

∫
Ω

f

−
∫

Ω

(a(x) + uqn)∇Tk(u)∇Th(un − Tk(u)) ϕ.

Since ∇Th(un − Tk(u)) 6= 0 (which implies un ≤ h + k), we can easily pass to
the limit as n tends to ∞, thanks to Remark 3.3, in the right hand side of the
above inequality, so that

(18) α lim sup
n→∞

∫
Ω

|∇Th(un − Tk(u))|2 ϕ ≤ Ch.
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Let now s be such that s < r < 2, where r is as in the statement of Lemma
3.2, we can write∫

ω

|∇un −∇u|s ≤
∫

Ω

|∇un −∇u|sϕ(19)

=

∫
{|un−u|≤h,u≤k}

|∇un −∇u|sϕ

+

∫
{|un−u|≤h,u>k}

|∇un −∇u|sϕ

+

∫
{|un−u|>h}

|∇un −∇u|sϕ.

If we denote by R the bound of un in W 1,r
0 (Ω), we have∫

Ω

|∇un −∇u|sϕ ≤
∫

Ω

|∇Th(un − Tk(u))|sϕ

+ ‖ϕ‖L∞(Ω)

(
2sRs(meas{u > k})1− sr

+ 2sRs(meas{|un − u| > h})1− sr
)
.

Thus, combining (18) and (19), we obtain for every h > 0 and every k > 0

lim sup
n→∞

∫
Ω

|∇un −∇u|sϕ ≤
(2h

α

∫
Ω

f
) s

2 ‖ϕ‖L∞(Ω)meas(Ω)1− s2

+ ‖ϕ‖L∞(Ω)2
sRs(meas{u > k})1− sr .

Letting h tends to zero and then k tends to infinity, we finally have

lim sup
n→∞

∫
Ω

|∇un −∇u|sϕ = 0, ∀s < 2.

Therefore, up to subsequence, {∇un} converges to ∇u a.e., and Lemma 3.5 is
completely proved. �

Now we are in position to prove our existence result given by the following
Theorem.

Theorem 3.6. Let γ < 1 and f be a nonnegative function in L1(Ω). Then
there exists a nonnegative solution u of problem (1) in the sense of Definition
1. Moreover, the solution u belongs to H1

0 (Ω) if q > 1 − γ and it belongs to

W 1,r
0 (Ω) (with r as in the statement of Lemma 3.2) if q ≤ γ − 1.

Proof. As we have already said (see Remark 3.3), there exists a function u ∈
W 1,r

0 (Ω), such that un converges weakly to u in W 1,r
0 (Ω). On the other hand,

Lemma 3.4, Lemma 3.5 and Remark 3.3 imply that the sequence uqn|∇un|
converges weakly to uq|∇u| in Lρ(Ω) for every ρ < N

N−1 . Hence for every ϕ in

C1
c (Ω)

lim
n→∞

∫
Ω

(a(x) + uqn)∇un∇ϕ =

∫
Ω

(a(x) + uq)∇u∇ϕ.
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For the limit of the right hand of (8). Let ω = {ϕ 6= 0}, then by Lemma 2.2,
one has, for ϕ in C1

c (Ω) ∣∣∣ fnϕ

(un + 1
n )γ

∣∣∣ ≤ ‖ϕ‖L∞
cγω

f.

Therefore, by Lebesgue convergence theorem, we obtain

lim
n→∞

∫
Ω

fnϕ

(un + 1
n )γ

=

∫
Ω

fϕ

uγ
.

Hence, we conclude that the solution u satisfies the conditions (5)-(7) of Defi-
nition 1, so that the proof of Theorem 3.6 is now completed. �

4. The case γ = 1

Lemma 4.1. Let un be the solution of problem (8), with γ = 1 and suppose

that f belongs to L1(Ω). Then un is bounded in H1
0 (Ω) ∩ L

N(q+2)
N−2 (Ω).

Remark 4.2. In contrast with the case γ < 1, we have no restriction over q
in order to have finite energy solutions. Furthermore, the solution u have an

additional summability in Ls(Ω) with s = N(q+2)
N−2 .

Proof. We take un as a test function in (8), using (2), we have since fnun
un+ 1

n

≤ f ,

(20) α

∫
Ω

|∇un|2 +

∫
Ω

uqn|∇un|2 ≤
∫

Ω

f,

which implies the boundedness of un in H1
0 (Ω). On the other hand, from (20),

by Sobolev embedding, it follows that(∫
Ω

u
2∗(q+2)

2
n

) 2
2∗ ≤

∫
Ω

f,

Hence un is bounded in L
N(q+2)
N−2 (Ω). �

Lemma 4.3. Let un be the solution of problem (8), with γ = 1. Suppose that
f belongs to L1(Ω). Then uqn|∇un| is bounded in Lρ(Ω) for every ρ < N

N−1 .

Proof. We choose T1(un)
(

1 − (1 + un)1−λ
)

, with λ > 1, as test function to

obtain,

γ

∫
Ω

T1(un)
(

1− (1 + un)1−λ
)

(a(x) + uqn)|∇T1(un)|

+ (λ− 1)

∫
Ω

T1(un)(a(x) + uqn)
|∇un|2

(1 + un)λ

=

∫
Ω

fn

un + 1
n

T1(un)
(

1− (1 + un)1−λ
)
.
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Dropping the nonnegative term, using (2), we have, since α+uqn ≥
min(α,1)

2q−1 (1+
un)q, ∫

Ω

T1(un)(1 + un)q−λ|∇un|2 ≤ C
∫

Ω

f.

Then, we obtain∫
{un>1}

(1 + un)q−λ|∇un|2 ≤
∫

Ω

T1(un)γ(1 + un)q−λ|∇un|2(21)

≤ C
∫

Ω

f.

Thanks to Lemma 4.1 and (21), we thus have∫
Ω

(1 + un)q−λ|∇un|2 =

∫
{un>1}

(1+un)q−λ|∇un|2+

∫
{un≤1}

(1+un)q−λ|∇un|2

≤ C.

Following exactly the same proof as in Lemma 3.4, we conclude the proof of
Lemma 4.1. �

Theorem 4.4. Let γ = 1 and f be a function in L1(Ω). Then there exists a

solution u in H1
0 (Ω) ∩ L

N(q+2)
N−2 (Ω) of problem (1) in the sense of Definition 1 .

Proof. Thanks to Lemmas 2.2, 3.5, 4.1 and 4.3, the proof of Theorem 4.4 is
identical to the one of Theorem 3.6. �

5. The strongly singular case γ > 1

In this case we can not have an estimate on un in H1
0 (Ω). However, we can

prove that un is bounded in H1
loc(Ω) such that the boundary condition can be

satisfied through the fact that u
q+γ+1

2
n in H1

0 (Ω).

Lemma 5.1. Let un be the solution of the problem (8), with γ > 1. Suppose

that f belongs to L1(Ω). Then u
q+γ+1

2
n is bounded in H1

0 (Ω), and un is bounded
in H1

loc(Ω). Moreover if q ≤ γ− 1, then uqn|∇un| is bounded in L2(ω) for every
ω ⊂⊂ Ω.

Proof. We choose uγn as test function in (8), dropping the nonnegative term,

we obtain since
uγn

(un+ 1
n )γ
≤ 1

(22)

∫
Ω

uq+γ−1
n |∇un|2 ≤

∫
Ω

fnu
γ
n

(un + 1
n )γ
≤
∫

Ω

f,

by observing that∫
Ω

uq+γ−1
n |∇un|2 =

4

(q + γ + 1)2

∫
Ω

|∇u
q+γ+1

2
n |2,
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we easily deduce the first result of the Lemma. Next, we take uγn

(
1 − (1 +

un)1−(q+γ)
)

as test function, dropping the nonnegative term, using (2), we

have

(q + γ − 1)

∫
Ω

uγn(α+ uqn)
|∇un|2

(1 + un)q+γ
≤
∫

Ω

fnu
γ
n

(un + 1
n )γ
≤
∫

Ω

f,

and so,∫
{un≥1}

(α+ uq+γn )
|∇un|2

(1 + un)q+γ
≤
∫

Ω

(αuγn + uq+γn )
|∇un|2

(1 + un)q+γ
≤ C

∫
Ω

f,

which yields that

min(α, 1)

2q+γ−1)

∫
{un≥1}

|∇un|2 ≤ min(α, 1)

∫
{un≥1}

1 + uq+γn

(1 + un)q+γ
|∇un|2 ≤ C

∫
Ω

f,

and then ∫
{un≥1}

|∇un|2 ≤ C.(23)

Now we take T γk (un) as test function in (8), using (2), Lemma 2.2 and recalling

that
Tγk (un)

(un+ 1
n )γ
≤ un

(un+ 1
n )γ
≤ 1 we then obtain

αcγ−1
ω

∫
ω

|∇Tk(un)|2 ≤ α
∫

Ω

T γ−1
k (un)|∇Tk(un)|2 ≤

∫
Ω

f ∀ω ⊂⊂ Ω,

and we arrive at ∫
ω

|∇Tk(un)|2 ≤ C ∀ω ⊂⊂ Ω.(24)

Finally, using (23) together with (24) yield that∫
ω

|∇un|2 =

∫
ω∩{un≥1}

|∇un|2 +

∫
ω

|∇T1(un)|2 ≤ C ∀ω ⊂⊂ Ω,

so that un is bounded in H1
loc(Ω), as desired.

Now starting from (22), we have∫
{un≥1}

uq+γ−1
n |∇un|2 ≤

∫
Ω

fnu
γ
n

(un + 1
n )γ
≤
∫

Ω

f.

Then we obtain since 2q ≤ q + γ − 1∫
ω

u2q
n |∇un|2 =

∫
ω∩{un≥1}

uq+γ−1
n |∇un|2 +

∫
ω

|∇T1(un)|2 ≤ C, ∀ω ⊂⊂ Ω,

and then we deduce that uqn|∇un| is bounded in L2(ω) for every ω ⊂⊂ Ω. �

Remark 5.2. We note that by virtue of Lemma 5.1 we easily deduce the almost
everywhere convergence of ∇un to ∇u following exactly the same proof as the
one of Lemma 3.5.
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Now we are in position to prove our existence result given by the following
Theorem.

Theorem 5.3. Let γ > 1, q ≤ γ − 1 and f be a nonnegative function in
L1(Ω). Then there exists a nonnegative solution u ∈ H1

loc(Ω) of problem (1) in
the sense of Definition 1.

Proof. Thanks to Lemmas 2.2, 3.5, 5.1, the proof of Theorem 5.3 is identical
to the one of Theorem 3.6. �

6. Regularity results

In this section we study the regularity of solutions of the problem (1) de-
pending on q, γ > 0 and the summability of f .

6.1. The case γ < 1

Theorem 6.1. Let γ < 1, f be a nonnegative function in Lm(Ω), 1 < m <
N
2 and we set m1 = 2N

N(q+1)+γ(N−2)+2(1−q) ≤ m < N
2 . Then there exists a

nonnegative solution u of problem (1) given by Theorem 3.6 such that

(i) if m1 ≤ m < N
2 , q ≤ 1 − γ, then u belongs to H1

0 (Ω) ∩ Ls(Ω) with

s = Nm(q+γ+1)
N−2m .

(ii) if 1 < m < N
2 , q > 1 − γ, then u belongs to H1

0 (Ω) ∩ Ls(Ω) with

s = Nm(q+γ+1)
N−2m .

Proof. We choose u1−q
n as test function to obtain by Hölder inequality

(1− q)
∫

Ω

|∇un|2 ≤ ‖fn‖Lm(Ω)

(∫
Ω

u(1−q−γ)m′

n

) 1
m′
,

and by Sobolev embedding it follows,(∫
Ω

u2∗

n

) 2
2∗ ≤ C

(∫
Ω

u(1−q−γ)m′

n

) 1
m′
.(25)

Now if m = m1, we have (1 − q − γ)m′ = 2∗, and since m < N
2 , we have also

that 2
2∗ >

1
m′ , so from (25) we deduce that un is bounded in H1

0 (Ω) as desired

and so u belongs to H1
0 (Ω).

Next, we choose urn as test function, with r ≥ 1−q, dropping the nonnegative
term and by Hölder inequality we have∫

Ω

ur+q−1
n |∇un|2 ≤ ‖fn‖Lm(Ω)

(∫
Ω

u(r−γ)m′

n

) 1
m′
,

using again Sobolev embedding,(∫
Ω

u
2∗(r+q+1)

2
n

) 2
2∗ ≤ C

(∫
Ω

u(r−γ)m′

n

) 1
m′
.
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Choosing r such that (r − γ)m′ = 2∗(r+q+1)
2 which is equivalent to s =

Nm(q+γ+1)
N−2m and r ≥ 1 − q implies that m ≥ 2N

N(q+1)+γ(N−2)+2(1−q) , then we

deduce that un is bounded in Ls(Ω) so that u belongs to Ls(Ω).
Now it remains to prove (ii), we take urn as test function, with r > γ, drop-

ping the nonnegative term, and using Hölder inequality together with Sobolev
embedding yield that(∫

Ω

u
2∗(r+q+1)

2
n

) 2
2∗ ≤ ‖fn‖Lm(Ω)

(∫
Ω

u(r−γ)m′

n

) 1
m′
.

Choosing r such that (r − γ)m′ = 2∗(r+q+1)
2 which is equivalent to s =

Nm(q+γ+1)
N−2m and that r > γ implies that m > 1, then we deduce that un is

bounded in Ls(Ω) and so u belongs to Ls(Ω). �

Remark 6.2. The result of Theorem 6.1 improves that of [4] (see Lemma 5.5).
Indeed, we need only f to belong in Lm1(Ω) (m1 <

2N
N+γ(N−2)+2 ) in order to

get a finite energy solution. Moreover, the summability in Ls(Ω) with s =
Nm(q+γ+1)
N−2m is better than the summability Nm(γ+1)

N−2m obtained in [4].

As proved in Lemma 3.2, if 1 ≤ m < 2N
N(q+1)+γ(N−2)+2(1−q) , then we do not

have a finite energy solution.

Theorem 6.3. Let γ < 1, q ≤ 1− γ and f be a function in Lm(Ω), 1 ≤ m <
2N

N(q+1)+γ(N−2)+2(1−q) . Then the solution u of problem (1) belongs to W 1,r
0 (Ω),

r = N(q+γ+1)
N−(1−(q+γ)) .

6.2. The case γ = 1

Theorem 6.4. Let γ = 1, f be a nonnegative function in Lm(Ω), 1 ≤ m < N
2 .

Then there exists a nonnegative solution u of problem (1) given by Theorem

4.4 such that u belongs to H1
0 (Ω) ∩ Ls(Ω) with s = Nm(q+2)

N−2m .

Proof. We choose urn as test function, with r ≥ 1, dropping the nonnegative
term and by Hölder inequality we have∫

Ω

ur+q−1
n |∇un|2 ≤ ‖fn‖Lm(Ω)

(∫
Ω

u(r−1)m′

n

) 1
m′
,

by Sobolev embedding,(∫
Ω

u
2∗(r+q+1)

2
n

) 2
2∗ ≤ C

(∫
Ω

u(r−1)m′

n

) 1
m′
.

Choosing r such that (r − 1)m′ = 2∗(r+2)
2 which is equivalent to s = Nm(q+2)

N−2m

and r ≥ 1 implies that m ≥ 1, then we deduce that un is bounded in Ls(Ω)
and so u belongs to Ls(Ω). �
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6.3. The case γ > 1

Theorem 6.5. Let γ > 1, q > γ − 1 and f be a function in Lm(Ω), m > 1.
Then there exists a solution u of problem (1) such that if

max {1, N(2q − γ + 1)

4q − 2γ + 2 +N(q + γ + 1)
} < m <

N

2
,

then u belongs to Ls(Ω), s = Nm(q+γ+1)
N−2m .

Proof. Following the proof of Theorem 6.1, we deduce that un is bounded in
Ls(Ω) and so u belongs to Ls(Ω). Next, we choose uγn T1(un − Tk(un)) as test
function, we have

γ

∫
Ω

uγ−1
n (a(x) + uqn)|∇un|2T1(un − Tk(un))(26)

+

∫
{k≤un≤k+1}

uγn(a(x) + uqn)|∇un|2

=

∫
Ω

fn

(un + 1
n )γ

uγn T1(un − Tk(un)),

dropping the second nonnegative term in the left hand side of (26) and using
assumption (2), we obtain∫

{un≥k+1}
uγ−1
n |∇un|2 ≤

1

γα

∫
{un≥k+1}

f.(27)

Thus, thanks to the estimate (27), we have∫
{un>k}

uqn|∇un| ≤
(∫
{un>k}

u2q−γ+1
n

) 1
2
(∫
{un>k}

uγ−1
n |∇un|2

) 1
2

≤
(∫
{un>k}

u2q−γ+1
n

) 1
2
( 1

γα

∫
{un>k}

f
) 1

2

.

Since un is bounded in Ls(Ω), then 2q − γ + 1 ≤ s is equivalent to m ≥
N(2q−γ+1)

4q−2γ+2+N(q+γ+1) , and we thus have∫
{un>k}

uqn|∇un| ≤ C
(∫
{un>k}

f
) 1

2

.(28)

Now let ϕ ∈ C1
c (Ω), ϕ ≥ 0, ϕ ≡ 1 on ω ⊂⊂ Ω and E be a measurable subset of

Ω, using (28) and Lemma 5.1, we obtain∫
E∩ω

uqn|∇un| ≤
∫
E

uqn|∇un|ϕ ≤
∫
{un>k}

uqn|∇un|ϕ+ kq
∫
E

|∇un|ϕ

≤ C‖ϕ‖L∞
(∫
{un>k}

f
) 1

2

+ ‖ϕ‖L∞kqmeas(E)
1
2

(∫
ω

|∇un|2
) 1

2

.
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Taking the limit as meas(E) tends to zero, k tends to infinity and since uqn|∇un|
converges to uq|∇u| almost everywhere, we easily verify thanks to Vitali’s the-
orem that

uqn|∇un| converge strongly to uq|∇u| in L1
loc(Ω).(29)

Therefore, putting together (29), Lemma 2.2 and Lemma 5.1, we conclude the
proof of Theorem 6.5. �
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