ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM

Amine Marah and Hicham Redwane

Abstract. We prove existence and regularity results of solutions for a class of nonlinear singular elliptic problems like

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+|u|^{q}\right) \nabla u\right)=\frac{f}{|u|^{\gamma}} \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a bounded open subset of $\mathbb{R}^{\mathbb{N}}(N \geq 2), a(x)$ is a measurable nonnegative function, $q, \gamma>0$ and the source f is a nonnegative (not identicaly zero) function belonging to $L^{m}(\Omega)$ for some $m \geq 1$. Our results will depend on the summability of f and on the values of $q, \gamma>0$.

1. Introduction

Let us consider the following boundary value problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+|u|^{q}\right) \nabla u\right)=\frac{f}{|u|^{\gamma}} \text { in } \Omega \tag{1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is any bounded open subset of $\mathbb{R}^{\mathbb{N}}(N \geq 2), q, \gamma>0, f$ is a nonnegative function belonging to some Lebesgue space $L^{m}(\Omega), m \geq 1$, and let $a(x)$ be a measurable function satisfying

$$
\begin{equation*}
0<\alpha \leq a(x) \leq \beta \text { a.e. in } \Omega \tag{2}
\end{equation*}
$$

where α, β are fixed real numbers.
In the linear case, problems of the form

$$
\left\{\begin{array}{l}
-\operatorname{div}(M(x) \nabla u)=\frac{f}{u^{\gamma}} \text { in } \Omega \tag{3}\\
u>0 \\
u=0
\end{array}\right.
$$

Received April 4, 2020; Revised July 29, 2020; Accepted August 21, 2020.
2010 Mathematics Subject Classification. Primary 35J62, 35J75.
Key words and phrases. Nonlinear singular elliptic equations, existence, regularity.
where M is a bounded elliptic measurable matrix and f is smooth, have been largely studied in the past by many authors. We refer to the pioneer work of Stuart in [17], Crandall, Rabinowitz and Tartar in [6] and to the one of Lazer and McKenna in [12].

The linear problem (3) has been deeply studied by Boccardo and Orsina in [4] when the datum f belongs $L^{m}(\Omega), m \geq 1$. They have proved the existence and regularity of solutions depending on the values of γ (by distinguishing between the cases $\gamma>1, \gamma=1$ and $\gamma<1$), and on the summability m of the datum f. We emphasize that the main idea used by the authors in [4] in order to deal with the singular term $\frac{f}{u^{\gamma}}$ is strongly based on the standard maximum principle for elliptic equations which insures the strict positivity of the solutions u. A non existence result was also given in [4] if f is a bounded Radon measure concentrated on a Borel set E of zero capacity for every $\gamma>0$. After that a large number of papers was devoted to the study the existence of solutions of problems like (1) in both linear and nonlinear cases and in different contexts, for a review of such results we refer to $[5,7-10,14,15,18]$ and the references therein.

The motivations in studying problem (1) are mainly arise by the papers [1] and [4]. In [1] (see also [2,13]), the existence of solutions of the following quasilinear elliptic problem of the type

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+|u|^{q}\right) \nabla u\right)+b(x)|u|^{p-1} u|\nabla u|^{2}=f \text { in } \Omega, \tag{4}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

was investigated when f is nonnegative, f belongs to $L^{1}(\Omega), a(x)$ satisfying (2), $0<\mu \leq b(x) \leq \nu$, a.e. in Ω and $p \geq 2 q$ (see also the improvements in [13], when the existence of solutions has been proved without any restriction on p, q and on the sign of f).

The aim of this paper is to prove the existence and regularity of solutions of problem (1) depending on the summability of the datum f and the parameters γ and q. As we will see, our growth assumption on the function $a(x)+|u|^{q}$ has a regularization effect on the solution u and its gradient ∇u, allowing in some cases to have finite energy solutions (i.e., solutions in $H_{0}^{1}(\Omega)$) even if f belongs to $L^{1}(\Omega)$.
Notations. Hereafter, we will make use of two truncation functions T_{k} and G_{k} : for every $k \geq 0$ and $r \in \mathbb{R}$, let

$$
T_{k}(r)=\min (k, \max (r,-k)), \quad G_{k}(r)=r-T_{k}(r)
$$

For the sake of simplicity we will use when referring to the integrals the following notation

$$
\int_{\Omega} f=\int_{\Omega} f(x) d x
$$

Finally, throughout this paper, C will indicate any positive constant which depends only on data and whose value may change from line to line.

Our aim is to prove the existence of weak solutions to problem (1). Here is the definition of solutions we will consider.

Definition 1. A solution of (1) is a function $u \in W_{0}^{1,1}(\Omega)$ such that

$$
\begin{equation*}
\forall \omega \subset \subset \Omega, \quad \exists c_{\omega}>0: u \geq c_{\omega} \text { in } \omega \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(a(x)+u^{q}\right)|\nabla u| \in L_{l o c}^{1}(\Omega) \tag{6}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{\Omega}\left(a(x)+u^{q}\right) \nabla u \nabla \varphi=\int_{\Omega} \frac{f \varphi}{u^{\gamma}}, \quad \forall \varphi \in C_{c}^{1}(\Omega) . \tag{7}
\end{equation*}
$$

2. Approximation of problem (1)

Let f be a nonnegative measurable function which belongs to some Lebesgue space, let $n \in \mathbb{N}, f_{n}=\frac{f}{1+\frac{1}{n} f}$ and let us consider the following approximate problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+u_{n}^{q}\right) \nabla u_{n}\right)=\frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \text { in } \Omega \tag{8}\\
u_{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Lemma 2.1. Problem (8) has a nonnegative weak solution $u_{n} \in H_{0}^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$.

Proof. Let $k, n \in \mathbb{N}$ be fixed, $v \in L^{2}(\Omega)$ and define $w=F(v)$ to be the unique solution of

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+\left|T_{k}(v)\right|^{q}\right) \nabla w\right)=\frac{f_{n}}{\left(|v|+\frac{1}{n}\right)^{\gamma}} \text { in } \Omega \\
w=0 \text { on } \partial \Omega
\end{array}\right.
$$

using w as test function, we have using (2)

$$
\alpha \int_{\Omega}|\nabla w|^{2} \leq n^{\gamma+1} \int_{\Omega}|w|,
$$

by Hölder inequality together with Poincaré inequality, it follows that

$$
\int_{\Omega}|w|^{2} \leq C n^{\gamma+1}\left(\int_{\Omega}|w|^{2}\right)^{\frac{1}{2}}
$$

and so,

$$
\int_{\Omega}|w|^{2} \leq C n^{\frac{\gamma+1}{2}}
$$

Hence, the ball of radius $C n^{\frac{\gamma+1}{2}}$ is invariant for F. Now, let us choose a sequence $v_{r} \rightarrow v$ in $L^{2}(\Omega)$, then by Lebesgue convergence theorem:

$$
\frac{f_{n}}{\left(\left|v_{r}\right|+\frac{1}{n}\right)^{\gamma}} \rightarrow \frac{f_{n}}{\left(|v|+\frac{1}{n}\right)^{\gamma}} \text { in } L^{2}(\Omega),
$$

and the uniqueness of solution for linear problem yields that $w_{r}=F\left(v_{r}\right) \rightarrow$ $w=F(v)$ in $L^{2}(\Omega)$. Therefore, we proved that F is continuous.

As we proved before, we have that

$$
\int_{\Omega}|\nabla F(v)|^{2} \leq C(\gamma, n) \text { for any } v \in L^{2}(\Omega)
$$

then, $F(v)$ is relatively compact in $L^{2}(\Omega)$, and by Schauder's fixed point theorem, there exists $u_{n, k} \in H_{0}^{1}(\Omega)$ such that $F\left(u_{n, k}\right)=u_{n, k}$ for each n, k fixed. Moreover, $u_{n, k}$ belongs to $L^{\infty}(\Omega)$ for all $k, n \in \mathbb{N}$. Indeed, for $t \geq 1$ fixed, using $G_{t}\left(u_{n, k}\right)$ as test function, we obtain, since $u_{n, k}+\frac{1}{n} \geq t \geq 1$ on $\left\{u_{n, k} \geq t\right\}$.

$$
\int_{\Omega}\left|\nabla G_{t}\left(u_{n, k}\right)\right|^{2} \leq \int_{\Omega} f_{n} G_{t}\left(u_{n, k}\right),
$$

and so, the result of [16] implies that $u_{n, k} \in L^{\infty}(\Omega)$. Furthermore, the estimate of $u_{n, k}$ in $L^{\infty}(\Omega)$ is independent from $k \in \mathbb{N}$, then for k large enough and for n fixed, $u_{n} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ is the solution of the following approximate problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(a(x)+\left|u_{n}\right|^{q}\right) \nabla u_{n}\right)=\frac{f_{n}}{\left(\left|u_{n}\right|+\frac{1}{n}\right)^{\gamma}} \text { in } \Omega, \\
u_{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Since $\frac{f_{n}}{\left(\left|u_{n}\right|+\frac{1}{n}\right)^{\gamma}} \geq 0$, the maximum principle implies that $u_{n} \geq 0$ and this conclude the proof.

Lemma 2.2. The sequence u_{n} is such that for every $\omega \subset \subset \Omega$ there exists c_{ω} not depending on n such that

$$
u_{n} \geq c_{\omega}>0 \text { in } \omega, \quad \forall n \in \mathbb{N}
$$

Proof. We emphasize that since we have an unbouded divergence operator, the method developed in the proof of Lemma 2.2 in [4] does not apply directly here, so, we use the idea in the proof of Lemma 2.3 of [2]. In order to do that, let us first define for $s \geq 0$ the function

$$
\Psi_{\delta}(s)=\left\{\begin{array}{l}
1 \text { if } 0 \leq s<1 \\
\frac{1}{\delta}(1+\delta-s) \text { if } 1 \leq s<\delta+1 \\
0 \text { if } s \geq \delta+1
\end{array}\right.
$$

We choose $\Psi_{\delta}\left(u_{n}\right) \varphi$ as test function in (8) with $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), \varphi \geq 0$, then we have

$$
\begin{aligned}
\int_{\Omega}\left(a(x)+u_{n}^{q}\right) \nabla u_{n} \nabla \varphi \Psi_{\delta}\left(u_{n}\right)= & \frac{1}{\delta} \int_{\left\{1 \leq u_{n} \leq \delta+1\right\}}\left(a(x)+u_{n}^{q}\right)\left|\nabla u_{n}\right|^{2} \varphi \\
& +\int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \Psi_{\delta}\left(u_{n}\right) \varphi
\end{aligned}
$$

thus, dropping the nonnegative term and letting δ goes to zero, we obtain

$$
\int_{\Omega}\left(a(x)+u_{n}^{q}\right) \nabla u_{n} \nabla \varphi \chi_{\left\{0 \leq u_{n}<1\right\}} \geq \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \varphi \chi_{\left\{0 \leq u_{n}<1\right\}}
$$

Therefore

$$
\int_{\Omega}\left(a(x)+T_{1}\left(u_{n}\right)^{q}\right) \nabla T_{1}\left(u_{n}\right) \nabla \varphi \geq \int_{\Omega} \frac{f}{2^{\gamma}(1+f)} \chi_{\left\{0 \leq u_{n}<1\right\}} \varphi
$$

for every $\varphi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \varphi \geq 0$.
Since $\frac{f}{2^{\gamma}(1+f)} \chi_{\left\{0 \leq u_{n}<1\right\}}$ is not identically zero and $\alpha \leq a(x)+T_{1}\left(u_{n}\right)^{q} \leq$ $\beta+1$, the strong maximum principle (see [11]) implies that there exists $c_{\omega}>0$ such that $T_{1}\left(u_{n}\right) \geq c_{\omega}$ in every $\omega \subset \subset \Omega$, and so $u_{n} \geq c_{\omega}$ (since $\left.T_{1}\left(u_{n}\right) \leq u_{n}\right)$. Therefore, Lemma 2.2 is completely proved.

In order to prove the existence of solution for problem (1), we need a priori estimates on the approximate solutions u_{n}, depending on f, q and γ, so that we distinguish between different cases.

3. The case $\gamma<1$

3.1. The case $\gamma<1$ and $q>1-\gamma$

Lemma 3.1. Let u_{n} be the solution of problem (8), with $\gamma<1$ and $q>1-\gamma$. Suppose that f belongs to $L^{1}(\Omega)$. Then u_{n} is bounded in $H_{0}^{1}(\Omega)$.

Proof. For n fixed, we choose $\varepsilon<\frac{1}{n}$ and use $\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)(1-(1+$ $\left.u_{n}\right)^{1-(q+\gamma)}$) as test function, then we have

$$
\begin{align*}
& \gamma \int_{\Omega}\left(u_{n}+\varepsilon\right)^{\gamma-1}\left(1-\left(1+u_{n}\right)^{1-(q+\gamma)}\right)\left(a(x)+u_{n}^{q}\right)\left|\nabla u_{n}\right|^{2} \tag{9}\\
& +(q+\gamma-1) \int_{\Omega}\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(a(x)+u_{n}^{q}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \\
= & \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1-\left(1+u_{n}\right)^{1-(q+\gamma)}\right) .
\end{align*}
$$

Dropping the first nonnegative term in the left hand side of (9), using (2) and since $\varepsilon<\frac{1}{n}$, we thus obtain

$$
\begin{aligned}
& (q+\gamma-1) \int_{\Omega}\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(\alpha+u_{n}^{q}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \\
\leq & \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1-\left(1+u_{n}\right)^{1-(q+\gamma)}\right) \leq \int_{\Omega} f,
\end{aligned}
$$

and passing to the limit on ε

$$
\begin{equation*}
\int_{\Omega}\left(\alpha u_{n}^{\gamma}+u_{n}^{q+\gamma}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \leq C \int_{\Omega} f \tag{10}
\end{equation*}
$$

Since we have

$$
\int_{\left\{u_{n} \geq 1\right\}}\left(\alpha+u_{n}^{q+\gamma}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \leq \int_{\Omega}\left(\alpha u_{n}^{\gamma}+u_{n}^{q+\gamma}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}},
$$

then it follows from (10) that

$$
\frac{\min (\alpha, 1)}{2^{q+\gamma-1}} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{2} \leq \min (\alpha, 1) \int_{\left\{u_{n} \geq 1\right\}} \frac{1+u_{n}^{q+\gamma}}{\left(1+u_{n}\right)^{q+\gamma}}\left|\nabla u_{n}\right|^{2} \leq C \int_{\Omega} f .
$$

Hence

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{2} \leq C . \tag{11}
\end{equation*}
$$

Now, we choose $\left(T_{k}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}$ as test function with $\varepsilon<\frac{1}{n}$ in (8), using (2) and dropping the nonnegative term, we get

$$
\alpha \int_{\Omega} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}}{\left(T_{k}\left(u_{n}\right)+\varepsilon\right)^{1-\gamma}} \leq \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(T_{k}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right) \leq \int_{\Omega} f
$$

Therefore

$$
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}=\int_{\Omega} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{2}}{\left(T_{k}\left(u_{n}\right)+\varepsilon\right)^{1-\gamma}}\left(T_{k}\left(u_{n}\right)+\varepsilon\right)^{1-\gamma} \leq C(k+\varepsilon)^{1-\gamma}
$$

Letting ε goes to zero

$$
\begin{equation*}
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq C k^{1-\gamma} \tag{12}
\end{equation*}
$$

Combining (11) and (12) we obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2}=\int_{\left\{u_{n}>1\right\}}\left|\nabla u_{n}\right|^{2}+\int_{\left\{u_{n} \leq 1\right\}}\left|\nabla u_{n}\right|^{2} \leq C .
$$

Hence, u_{n} is bounded in $H_{0}^{1}(\Omega)$ as desired.

3.2. The case $\gamma<1$ and $q \leq 1-\gamma$

In this case, we can not have an estimate of u_{n} in $H_{0}^{1}(\Omega)$, but in a larger Sobolev space.

Lemma 3.2. Let u_{n} be the solution of problem (8), with $\gamma<1$ and $q \leq$ $1-\gamma$. Suppose that f belongs to $L^{1}(\Omega)$. Then u_{n} is bounded in $W_{0}^{1, r}(\Omega)$, $r=\frac{N(q+\gamma+1)}{N-(1-(q+\gamma))}$.
Proof. For fixed n, we choose $\varepsilon<\frac{1}{n}$ and use $\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}$ as test function, we obtain, using (2)

$$
\begin{aligned}
\gamma \frac{\min (\alpha, 1)}{2^{q-1}} \int_{\Omega}\left(u_{n}+\varepsilon\right)^{q+\gamma-1}\left|\nabla u_{n}\right|^{2} & \leq \gamma \int_{\Omega}\left(\alpha+u_{n}^{q}\right)\left(u_{n}+\varepsilon\right)^{\gamma-1}\left|\nabla u_{n}\right|^{2} \\
& \leq \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(u_{n}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right) \leq \int_{\Omega} f
\end{aligned}
$$

and by the Sobolev inequality

$$
\begin{equation*}
\left(\int_{\Omega}\left(\left(u_{n}+\varepsilon\right)^{\frac{q+\gamma+1}{2}}-\varepsilon^{\frac{q+\gamma+1}{2}}\right)^{2^{*}}\right)^{\frac{2}{2^{*}}} \leq C \int_{\Omega} f \tag{13}
\end{equation*}
$$

Letting ε goes to zero, then (13) becomes

$$
\begin{equation*}
\int_{\Omega} u_{n}^{\frac{2^{*}(q+\gamma+1)}{2}} \leq C \tag{14}
\end{equation*}
$$

Therefore, u_{n} is bounded in $L^{\frac{N(q+\gamma+1)}{N-2}}(\Omega)$. Now if $r<2$ as in the statement of Lemma 3.2, we have by Hölder inequality

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n}\right|^{r} & =\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(u_{n}+\varepsilon\right)^{(1-(q+\gamma)) \frac{r}{2}}}\left(u_{n}+\varepsilon\right)^{(1-(q+\gamma)) \frac{r}{2}} \\
& \leq C\left(\int_{\Omega}\left(u_{n}+\varepsilon\right)^{(1-(q+\gamma)) \frac{r}{2-r}}\right)^{1-\frac{r}{2}}
\end{aligned}
$$

Thanks to (14), the value of r is such that $\frac{(1-(q+\gamma)) r}{2-r}=\frac{N(q+\gamma+1)}{N-2}$, so that the right hand side of the above inequality is bounded, and then u_{n} is bounded in $W_{0}^{1, r}(\Omega), r=\frac{N(q+\gamma+1)}{N-(1-(q+\gamma))}$ as desired.

Remark 3.3. As consequence of both Lemmas 3.1 and 3.2, there exist a subsequence (not relabeled) and a function u such that u_{n} converges weakly to u in $W_{0}^{1, r}(\Omega)$ (with $r=\frac{N(q+\gamma+1)}{N-(1-(q+\gamma))}$) and almost everywhere in Ω.

In the next Lemma we give an estimate of $u_{n}^{q}\left|\nabla u_{n}\right|$ in $L^{\rho}(\Omega)$ for any $\rho<\frac{N}{N-1}$.
Lemma 3.4. Let u_{n} be the solution of problem (8), with $\gamma<1$. Suppose that f belongs to $L^{1}(\Omega)$. Then $u_{n}^{q}\left|\nabla u_{n}\right|$ is bounded in $L^{\rho}(\Omega)$ for every $\rho<\frac{N}{N-1}$.
Proof. For n fixed, we choose $\varepsilon<\frac{1}{n}$ and we take as test function $\left(\left(T_{1}\left(u_{n}\right)+\right.\right.$ $\left.\varepsilon)^{\gamma}-\varepsilon^{\gamma}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right)$, with $\lambda>1$, to obtain,

$$
\begin{align*}
& \gamma \int_{\Omega}\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma-1}\left(1-\left(1+u_{n}\right)^{1-\lambda}\right)\left(a(x)+u_{n}^{q}\right)\left|\nabla T_{1}\left(u_{n}\right)\right|^{2} \tag{15}\\
& +(\lambda-1) \int_{\Omega}\left(\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(a(x)+u_{n}^{q}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{\lambda}} \\
= & \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right) .
\end{align*}
$$

Dropping the first nonnegative term in the left hand side of (15), using (2) and the fact that $\alpha+u_{n}^{q} \geq \frac{\min (\alpha, 1)}{2^{q-1}}\left(1+u_{n}\right)^{q}$ yield

$$
\begin{aligned}
& (\lambda-1) \frac{\min (\alpha, 1)}{2^{q-1}} \int_{\Omega}\left(\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \\
\leq & \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\left(\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right) .
\end{aligned}
$$

Since $\varepsilon<\frac{1}{n}$ and $\lambda>1$, we obtain

$$
\begin{equation*}
\int_{\Omega}\left(\left(T_{1}\left(u_{n}\right)+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma}\right)\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \leq C \int_{\Omega} f \tag{16}
\end{equation*}
$$

Letting ε goes to zero, then (16) becomes

$$
\begin{equation*}
\int_{\left\{u_{n}>1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \leq \int_{\Omega} T_{1}\left(u_{n}\right)^{\gamma}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \leq C \int_{\Omega} f . \tag{17}
\end{equation*}
$$

Combining (12) and (17) lead to

$$
\begin{aligned}
\int_{\Omega}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} & =\int_{\left\{u_{n}>1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2}+\int_{\left\{u_{n} \leq 1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \\
& \leq C .
\end{aligned}
$$

Now let us set $\rho=\frac{N(2+q-\lambda}{N(q+1)-(\lambda+q)}$, using the previous result together with Hölder inequality, we thus have

$$
\int_{\Omega} u_{n}^{q \rho}\left|\nabla u_{n}\right|^{\rho} \leq \int_{\Omega}\left(1+u_{n}\right)^{\frac{\rho(q+\lambda)}{2}} \frac{\left|\nabla u_{n}\right|^{\rho}}{\left(1+u_{n}\right)^{\frac{\rho(\lambda-q)}{2}}} \leq C\left(\int_{\Omega}\left(1+u_{n}\right)^{\frac{\rho(q+\lambda)}{2-\rho}}\right)^{\frac{2-\rho}{2}}
$$

and the Sobolev inequality yields that

$$
\left(\int_{\Omega} u_{n}^{\rho^{*}(q+1)}\right)^{\frac{\rho}{\rho^{*}}} \leq C\left(\int_{\Omega} u_{n}^{\frac{\rho(q+\lambda)}{2-\rho}}\right)^{\frac{2-\rho}{2}}
$$

the previous choice of ρ implies that $\rho^{*}(q+1)=\frac{\rho(q+\lambda)}{2-\rho}$, and since $\lambda>1$, we obtain an estimate of $u_{n}^{q}\left|\nabla u_{n}\right|$ in $L^{\rho}(\Omega)$ for every $\rho<\frac{N}{N-1}$, as desired.

In order to pass to the limit in the approximate equations, the almost everywhere convergence of the ∇u_{n} to ∇u is required, this result will be proved following the same techniques as in [2] (see also [3,13]).

Lemma 3.5. The sequence $\left\{\nabla u_{n}\right\}$ converges to ∇u a.e..
Proof. Let $\varphi \in C_{c}^{1}(\Omega), \varphi \geq 0, \varphi \equiv 1$ on $\omega \subset \subset \Omega$ and use $T_{h}\left(u_{n}-T_{k}(u)\right) \varphi$ as test function in (8), we thus have thanks to Lemmas 2.2 and 3.4

$$
\begin{aligned}
& \int_{\Omega}\left(a(x)+u_{n}^{q}\right)\left|\nabla T_{h}\left(u_{n}-T_{k}(u)\right)\right|^{2} \varphi \\
\leq & C h\|\nabla \varphi\|_{L^{\infty}(\Omega)}+h\|\varphi\|_{L^{\infty}(\Omega)} \frac{1}{c_{\omega}^{\gamma}} \int_{\Omega} f \\
& -\int_{\Omega}\left(a(x)+u_{n}^{q}\right) \nabla T_{k}(u) \nabla T_{h}\left(u_{n}-T_{k}(u)\right) \varphi .
\end{aligned}
$$

Since $\nabla T_{h}\left(u_{n}-T_{k}(u)\right) \neq 0$ (which implies $u_{n} \leq h+k$), we can easily pass to the limit as n tends to ∞, thanks to Remark 3.3, in the right hand side of the above inequality, so that

$$
\begin{equation*}
\alpha \limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla T_{h}\left(u_{n}-T_{k}(u)\right)\right|^{2} \varphi \leq C h . \tag{18}
\end{equation*}
$$

Let now s be such that $s<r<2$, where r is as in the statement of Lemma 3.2 , we can write

$$
\begin{align*}
\int_{\omega}\left|\nabla u_{n}-\nabla u\right|^{s} \leq & \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi \tag{19}\\
= & \int_{\left\{\left|u_{n}-u\right| \leq h, u \leq k\right\}}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi \\
& +\int_{\left\{\left|u_{n}-u\right| \leq h, u>k\right\}}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi \\
& +\int_{\left\{\left|u_{n}-u\right|>h\right\}}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi .
\end{align*}
$$

If we denote by R the bound of u_{n} in $W_{0}^{1, r}(\Omega)$, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi \leq & \int_{\Omega}\left|\nabla T_{h}\left(u_{n}-T_{k}(u)\right)\right|^{s} \varphi \\
& +\|\varphi\|_{L^{\infty}(\Omega)}\left(2^{s} R^{s}(\operatorname{meas}\{u>k\})^{1-\frac{s}{r}}\right. \\
& \left.+2^{s} R^{s}\left(\operatorname{meas}\left\{\left|u_{n}-u\right|>h\right\}\right)^{1-\frac{s}{r}}\right)
\end{aligned}
$$

Thus, combining (18) and (19), we obtain for every $h>0$ and every $k>0$

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi \leq & \left(\frac{2 h}{\alpha} \int_{\Omega} f\right)^{\frac{s}{2}}\|\varphi\|_{L^{\infty}(\Omega)} \operatorname{meas}(\Omega)^{1-\frac{s}{2}} \\
& +\|\varphi\|_{L^{\infty}(\Omega)} 2^{s} R^{s}(\operatorname{meas}\{u>k\})^{1-\frac{s}{r}}
\end{aligned}
$$

Letting h tends to zero and then k tends to infinity, we finally have

$$
\limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{s} \varphi=0, \quad \forall s<2
$$

Therefore, up to subsequence, $\left\{\nabla u_{n}\right\}$ converges to ∇u a.e., and Lemma 3.5 is completely proved.

Now we are in position to prove our existence result given by the following Theorem.
Theorem 3.6. Let $\gamma<1$ and f be a nonnegative function in $L^{1}(\Omega)$. Then there exists a nonnegative solution u of problem (1) in the sense of Definition 1. Moreover, the solution u belongs to $H_{0}^{1}(\Omega)$ if $q>1-\gamma$ and it belongs to $W_{0}^{1, r}(\Omega)$ (with r as in the statement of Lemma 3.2) if $q \leq \gamma-1$.
Proof. As we have already said (see Remark 3.3), there exists a function $u \in$ $W_{0}^{1, r}(\Omega)$, such that u_{n} converges weakly to u in $W_{0}^{1, r}(\Omega)$. On the other hand, Lemma 3.4, Lemma 3.5 and Remark 3.3 imply that the sequence $u_{n}^{q}\left|\nabla u_{n}\right|$ converges weakly to $u^{q}|\nabla u|$ in $L^{\rho}(\Omega)$ for every $\rho<\frac{N}{N-1}$. Hence for every φ in $C_{c}^{1}(\Omega)$

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left(a(x)+u_{n}^{q}\right) \nabla u_{n} \nabla \varphi=\int_{\Omega}\left(a(x)+u^{q}\right) \nabla u \nabla \varphi
$$

For the limit of the right hand of (8). Let $\omega=\{\varphi \neq 0\}$, then by Lemma 2.2, one has, for φ in $C_{c}^{1}(\Omega)$

$$
\left|\frac{f_{n} \varphi}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}\right| \leq \frac{\|\varphi\|_{L^{\infty}}}{c_{\omega}^{\gamma}} f .
$$

Therefore, by Lebesgue convergence theorem, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \frac{f_{n} \varphi}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}}=\int_{\Omega} \frac{f \varphi}{u^{\gamma}}
$$

Hence, we conclude that the solution u satisfies the conditions (5)-(7) of Definition 1, so that the proof of Theorem 3.6 is now completed.

4. The case $\gamma=1$

Lemma 4.1. Let u_{n} be the solution of problem (8), with $\gamma=1$ and suppose that f belongs to $L^{1}(\Omega)$. Then u_{n} is bounded in $H_{0}^{1}(\Omega) \cap L^{\frac{N(q+2)}{N-2}}(\Omega)$.

Remark 4.2. In contrast with the case $\gamma<1$, we have no restriction over q in order to have finite energy solutions. Furthermore, the solution u have an additional summability in $L^{s}(\Omega)$ with $s=\frac{N(q+2)}{N-2}$.
Proof. We take u_{n} as a test function in (8), using (2), we have since $\frac{f_{n} u_{n}}{u_{n}+\frac{1}{n}} \leq f$,

$$
\begin{equation*}
\alpha \int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega} u_{n}^{q}\left|\nabla u_{n}\right|^{2} \leq \int_{\Omega} f \tag{20}
\end{equation*}
$$

which implies the boundedness of u_{n} in $H_{0}^{1}(\Omega)$. On the other hand, from (20), by Sobolev embedding, it follows that

$$
\left(\int_{\Omega} u_{n}^{\frac{2^{*}(q+2)}{2}}\right)^{\frac{2}{2^{*}}} \leq \int_{\Omega} f
$$

Hence u_{n} is bounded in $L^{\frac{N(q+2)}{N-2}}(\Omega)$.
Lemma 4.3. Let u_{n} be the solution of problem (8), with $\gamma=1$. Suppose that f belongs to $L^{1}(\Omega)$. Then $u_{n}^{q}\left|\nabla u_{n}\right|$ is bounded in $L^{\rho}(\Omega)$ for every $\rho<\frac{N}{N-1}$.

Proof. We choose $T_{1}\left(u_{n}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right)$, with $\lambda>1$, as test function to obtain,

$$
\begin{aligned}
& \gamma \int_{\Omega} T_{1}\left(u_{n}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right)\left(a(x)+u_{n}^{q}\right)\left|\nabla T_{1}\left(u_{n}\right)\right| \\
& +(\lambda-1) \int_{\Omega} T_{1}\left(u_{n}\right)\left(a(x)+u_{n}^{q}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{\lambda}} \\
= & \int_{\Omega} \frac{f_{n}}{u_{n}+\frac{1}{n}} T_{1}\left(u_{n}\right)\left(1-\left(1+u_{n}\right)^{1-\lambda}\right) .
\end{aligned}
$$

Dropping the nonnegative term, using (2), we have, since $\alpha+u_{n}^{q} \geq \frac{\min (\alpha, 1)}{2^{q-1}}(1+$ $\left.u_{n}\right)^{q}$,

$$
\int_{\Omega} T_{1}\left(u_{n}\right)\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \leq C \int_{\Omega} f
$$

Then, we obtain

$$
\begin{align*}
\int_{\left\{u_{n}>1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} & \leq \int_{\Omega} T_{1}\left(u_{n}\right)^{\gamma}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \tag{21}\\
& \leq C \int_{\Omega} f .
\end{align*}
$$

Thanks to Lemma 4.1 and (21), we thus have

$$
\begin{aligned}
\int_{\Omega}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} & =\int_{\left\{u_{n}>1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2}+\int_{\left\{u_{n} \leq 1\right\}}\left(1+u_{n}\right)^{q-\lambda}\left|\nabla u_{n}\right|^{2} \\
& \leq C .
\end{aligned}
$$

Following exactly the same proof as in Lemma 3.4, we conclude the proof of Lemma 4.1.

Theorem 4.4. Let $\gamma=1$ and f be a function in $L^{1}(\Omega)$. Then there exists a solution u in $H_{0}^{1}(\Omega) \cap L^{\frac{N(q+2)}{N-2}}(\Omega)$ of problem (1) in the sense of Definition 1.

Proof. Thanks to Lemmas 2.2, 3.5, 4.1 and 4.3, the proof of Theorem 4.4 is identical to the one of Theorem 3.6.

5. The strongly singular case $\gamma>1$

In this case we can not have an estimate on u_{n} in $H_{0}^{1}(\Omega)$. However, we can prove that u_{n} is bounded in $H_{l o c}^{1}(\Omega)$ such that the boundary condition can be satisfied through the fact that $u^{\frac{q+\gamma+1}{2}}$ in $H_{0}^{1}(\Omega)$.

Lemma 5.1. Let u_{n} be the solution of the problem (8), with $\gamma>1$. Suppose that f belongs to $L^{1}(\Omega)$. Then $u_{n}^{\frac{q+\gamma+1}{2}}$ is bounded in $H_{0}^{1}(\Omega)$, and u_{n} is bounded in $H_{l o c}^{1}(\Omega)$. Moreover if $q \leq \gamma-1$, then $u_{n}^{q}\left|\nabla u_{n}\right|$ is bounded in $L^{2}(\omega)$ for every $\omega \subset \subset \Omega$.

Proof. We choose u_{n}^{γ} as test function in (8), dropping the nonnegative term, we obtain since $\frac{u_{n}^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq 1$

$$
\begin{equation*}
\int_{\Omega} u_{n}^{q+\gamma-1}\left|\nabla u_{n}\right|^{2} \leq \int_{\Omega} \frac{f_{n} u_{n}^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq \int_{\Omega} f \tag{22}
\end{equation*}
$$

by observing that

$$
\int_{\Omega} u_{n}^{q+\gamma-1}\left|\nabla u_{n}\right|^{2}=\frac{4}{(q+\gamma+1)^{2}} \int_{\Omega}\left|\nabla u_{n}^{\frac{q+\gamma+1}{2}}\right|^{2}
$$

we easily deduce the first result of the Lemma. Next, we take $u_{n}^{\gamma}(1-(1+$ $\left.u_{n}\right)^{1-(q+\gamma)}$) as test function, dropping the nonnegative term, using (2), we have

$$
(q+\gamma-1) \int_{\Omega} u_{n}^{\gamma}\left(\alpha+u_{n}^{q}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \leq \int_{\Omega} \frac{f_{n} u_{n}^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq \int_{\Omega} f
$$

and so,

$$
\int_{\left\{u_{n} \geq 1\right\}}\left(\alpha+u_{n}^{q+\gamma}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \leq \int_{\Omega}\left(\alpha u_{n}^{\gamma}+u_{n}^{q+\gamma}\right) \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{q+\gamma}} \leq C \int_{\Omega} f
$$

which yields that

$$
\frac{\min (\alpha, 1)}{2^{q+\gamma-1)}} \int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{2} \leq \min (\alpha, 1) \int_{\left\{u_{n} \geq 1\right\}} \frac{1+u_{n}^{q+\gamma}}{\left(1+u_{n}\right)^{q+\gamma}}\left|\nabla u_{n}\right|^{2} \leq C \int_{\Omega} f,
$$

and then

$$
\begin{equation*}
\int_{\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{2} \leq C \tag{23}
\end{equation*}
$$

Now we take $T_{k}^{\gamma}\left(u_{n}\right)$ as test function in (8), using (2), Lemma 2.2 and recalling that $\frac{T_{k}^{\gamma}\left(u_{n}\right)}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq \frac{u_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq 1$ we then obtain

$$
\alpha c_{\omega}^{\gamma-1} \int_{\omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq \alpha \int_{\Omega} T_{k}^{\gamma-1}\left(u_{n}\right)\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq \int_{\Omega} f \quad \forall \omega \subset \subset \Omega,
$$

and we arrive at

$$
\begin{equation*}
\int_{\omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq C \quad \forall \omega \subset \subset \Omega \tag{24}
\end{equation*}
$$

Finally, using (23) together with (24) yield that

$$
\int_{\omega}\left|\nabla u_{n}\right|^{2}=\int_{\omega \cap\left\{u_{n} \geq 1\right\}}\left|\nabla u_{n}\right|^{2}+\int_{\omega}\left|\nabla T_{1}\left(u_{n}\right)\right|^{2} \leq C \quad \forall \omega \subset \subset \Omega
$$

so that u_{n} is bounded in $H_{l o c}^{1}(\Omega)$, as desired.
Now starting from (22), we have

$$
\int_{\left\{u_{n} \geq 1\right\}} u_{n}^{q+\gamma-1}\left|\nabla u_{n}\right|^{2} \leq \int_{\Omega} \frac{f_{n} u_{n}^{\gamma}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} \leq \int_{\Omega} f
$$

Then we obtain since $2 q \leq q+\gamma-1$

$$
\int_{\omega} u_{n}^{2 q}\left|\nabla u_{n}\right|^{2}=\int_{\omega \cap\left\{u_{n} \geq 1\right\}} u_{n}^{q+\gamma-1}\left|\nabla u_{n}\right|^{2}+\int_{\omega}\left|\nabla T_{1}\left(u_{n}\right)\right|^{2} \leq C, \quad \forall \omega \subset \subset \Omega,
$$

and then we deduce that $u_{n}^{q}\left|\nabla u_{n}\right|$ is bounded in $L^{2}(\omega)$ for every $\omega \subset \subset \Omega$.
Remark 5.2. We note that by virtue of Lemma 5.1 we easily deduce the almost everywhere convergence of ∇u_{n} to ∇u following exactly the same proof as the one of Lemma 3.5.

Now we are in position to prove our existence result given by the following Theorem.

Theorem 5.3. Let $\gamma>1, q \leq \gamma-1$ and f be a nonnegative function in $L^{1}(\Omega)$. Then there exists a nonnegative solution $u \in H_{l o c}^{1}(\Omega)$ of problem (1) in the sense of Definition 1.

Proof. Thanks to Lemmas 2.2, 3.5, 5.1, the proof of Theorem 5.3 is identical to the one of Theorem 3.6.

6. Regularity results

In this section we study the regularity of solutions of the problem (1) depending on $q, \gamma>0$ and the summability of f.

6.1. The case $\gamma<1$

Theorem 6.1. Let $\gamma<1$, f be a nonnegative function in $L^{m}(\Omega), 1<m<$ $\frac{N}{2}$ and we set $m_{1}=\frac{2 N}{N(q+1)+\gamma(N-2)+2(1-q)} \leq m<\frac{N}{2}$. Then there exists a nonnegative solution u of problem (1) given by Theorem 3.6 such that
(i) if $m_{1} \leq m<\frac{N}{2}, q \leq 1-\gamma$, then u belongs to $H_{0}^{1}(\Omega) \cap L^{s}(\Omega)$ with $s=\frac{N m(q+\gamma+1)}{N-2 m}$.
(ii) if $1<m<\frac{N}{2}, q>1-\gamma$, then u belongs to $H_{0}^{1}(\Omega) \cap L^{s}(\Omega)$ with $s=\frac{N m(q+\gamma+1)}{N-2 m}$.

Proof. We choose u_{n}^{1-q} as test function to obtain by Hölder inequality

$$
(1-q) \int_{\Omega}\left|\nabla u_{n}\right|^{2} \leq\left\|f_{n}\right\|_{L^{m}(\Omega)}\left(\int_{\Omega} u_{n}^{(1-q-\gamma) m^{\prime}}\right)^{\frac{1}{m^{\prime}}}
$$

and by Sobolev embedding it follows,

$$
\begin{equation*}
\left(\int_{\Omega} u_{n}^{2^{*}}\right)^{\frac{2}{2^{*}}} \leq C\left(\int_{\Omega} u_{n}^{(1-q-\gamma) m^{\prime}}\right)^{\frac{1}{m^{\prime}}} \tag{25}
\end{equation*}
$$

Now if $m=m_{1}$, we have $(1-q-\gamma) m^{\prime}=2^{*}$, and since $m<\frac{N}{2}$, we have also that $\frac{2}{2^{*}}>\frac{1}{m^{\prime}}$, so from (25) we deduce that u_{n} is bounded in $H_{0}^{1}(\Omega)$ as desired and so u belongs to $H_{0}^{1}(\Omega)$.

Next, we choose u_{n}^{r} as test function, with $r \geq 1-q$, dropping the nonnegative term and by Hölder inequality we have

$$
\int_{\Omega} u_{n}^{r+q-1}\left|\nabla u_{n}\right|^{2} \leq\left\|f_{n}\right\|_{L^{m}(\Omega)}\left(\int_{\Omega} u_{n}^{(r-\gamma) m^{\prime}}\right)^{\frac{1}{m^{\prime}}}
$$

using again Sobolev embedding,

$$
\left(\int_{\Omega} u_{n}^{\frac{2^{*}(r+q+1)}{2}}\right)^{\frac{2}{2^{*}}} \leq C\left(\int_{\Omega} u_{n}^{(r-\gamma) m^{\prime}}\right)^{\frac{1}{m^{\prime}}}
$$

Choosing r such that $(r-\gamma) m^{\prime}=\frac{2^{*}(r+q+1)}{2}$ which is equivalent to $s=$ $\frac{N m(q+\gamma+1)}{N-2 m}$ and $r \geq 1-q$ implies that $m \geq \frac{2 N}{N(q+1)+\gamma(N-2)+2(1-q)}$, then we deduce that u_{n} is bounded in $L^{s}(\Omega)$ so that u belongs to $L^{s}(\Omega)$.

Now it remains to prove (ii), we take u_{n}^{r} as test function, with $r>\gamma$, dropping the nonnegative term, and using Hölder inequality together with Sobolev embedding yield that

$$
\left(\int_{\Omega} u_{n}^{\frac{2^{*}(r+q+1)}{2}}\right)^{\frac{2}{2^{*}}} \leq\left\|f_{n}\right\|_{L^{m}(\Omega)}\left(\int_{\Omega} u_{n}^{(r-\gamma) m^{\prime}}\right)^{\frac{1}{m^{\prime}}}
$$

Choosing r such that $(r-\gamma) m^{\prime}=\frac{2^{*}(r+q+1)}{2}$ which is equivalent to $s=$ $\frac{N m(q+\gamma+1)}{N-2 m}$ and that $r>\gamma$ implies that $m>1$, then we deduce that u_{n} is bounded in $L^{s}(\Omega)$ and so u belongs to $L^{s}(\Omega)$.

Remark 6.2. The result of Theorem 6.1 improves that of [4] (see Lemma 5.5). Indeed, we need only f to belong in $L^{m_{1}}(\Omega)\left(m_{1}<\frac{2 N}{N+\gamma(N-2)+2}\right)$ in order to get a finite energy solution. Moreover, the summability in $L^{s}(\Omega)$ with $s=$ $\frac{N m(q+\gamma+1)}{N-2 m}$ is better than the summability $\frac{N m(\gamma+1)}{N-2 m}$ obtained in [4].

As proved in Lemma 3.2, if $1 \leq m<\frac{2 N}{N(q+1)+\gamma(N-2)+2(1-q)}$, then we do not have a finite energy solution.

Theorem 6.3. Let $\gamma<1, q \leq 1-\gamma$ and f be a function in $L^{m}(\Omega), 1 \leq m<$ $\frac{2 N}{N(q+1)+\gamma(N-2)+2(1-q)}$. Then the solution u of problem (1) belongs to $W_{0}^{1, r}(\Omega)$, $r=\frac{N(q+\gamma+1)}{N-(1-(q+\gamma))}$.

6.2. The case $\gamma=1$

Theorem 6.4. Let $\gamma=1, f$ be a nonnegative function in $L^{m}(\Omega), 1 \leq m<\frac{N}{2}$. Then there exists a nonnegative solution u of problem (1) given by Theorem 4.4 such that u belongs to $H_{0}^{1}(\Omega) \cap L^{s}(\Omega)$ with $s=\frac{N m(q+2)}{N-2 m}$.

Proof. We choose u_{n}^{r} as test function, with $r \geq 1$, dropping the nonnegative term and by Hölder inequality we have

$$
\int_{\Omega} u_{n}^{r+q-1}\left|\nabla u_{n}\right|^{2} \leq\left\|f_{n}\right\|_{L^{m}(\Omega)}\left(\int_{\Omega} u_{n}^{(r-1) m^{\prime}}\right)^{\frac{1}{m^{\prime}}}
$$

by Sobolev embedding,

$$
\left(\int_{\Omega} u_{n}^{\frac{2^{*}(r+q+1)}{2}}\right)^{\frac{2}{2^{*}}} \leq C\left(\int_{\Omega} u_{n}^{(r-1) m^{\prime}}\right)^{\frac{1}{m^{\prime}}} .
$$

Choosing r such that $(r-1) m^{\prime}=\frac{2^{*}(r+2)}{2}$ which is equivalent to $s=\frac{N m(q+2)}{N-2 m}$ and $r \geq 1$ implies that $m \geq 1$, then we deduce that u_{n} is bounded in $L^{s}(\Omega)$ and so u belongs to $L^{s}(\Omega)$.

6.3. The case $\gamma>1$

Theorem 6.5. Let $\gamma>1, q>\gamma-1$ and f be a function in $L^{m}(\Omega), m>1$. Then there exists a solution u of problem (1) such that if

$$
\max \left\{1, \frac{N(2 q-\gamma+1)}{4 q-2 \gamma+2+N(q+\gamma+1)}\right\}<m<\frac{N}{2}
$$

then u belongs to $L^{s}(\Omega), s=\frac{N m(q+\gamma+1)}{N-2 m}$.
Proof. Following the proof of Theorem 6.1, we deduce that u_{n} is bounded in $L^{s}(\Omega)$ and so u belongs to $L^{s}(\Omega)$. Next, we choose $u_{n}^{\gamma} T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right)$ as test function, we have

$$
\begin{align*}
& \gamma \int_{\Omega} u_{n}^{\gamma-1}\left(a(x)+u_{n}^{q}\right)\left|\nabla u_{n}\right|^{2} T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right) \tag{26}\\
& \quad+\int_{\left\{k \leq u_{n} \leq k+1\right\}} u_{n}^{\gamma}\left(a(x)+u_{n}^{q}\right)\left|\nabla u_{n}\right|^{2} \\
& = \\
& \int_{\Omega} \frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} u_{n}^{\gamma} T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right),
\end{align*}
$$

dropping the second nonnegative term in the left hand side of (26) and using assumption (2), we obtain

$$
\begin{equation*}
\int_{\left\{u_{n} \geq k+1\right\}} u_{n}^{\gamma-1}\left|\nabla u_{n}\right|^{2} \leq \frac{1}{\gamma \alpha} \int_{\left\{u_{n} \geq k+1\right\}} f \tag{27}
\end{equation*}
$$

Thus, thanks to the estimate (27), we have

$$
\begin{aligned}
\int_{\left\{u_{n}>k\right\}} u_{n}^{q}\left|\nabla u_{n}\right| & \leq\left(\int_{\left\{u_{n}>k\right\}} u_{n}^{2 q-\gamma+1}\right)^{\frac{1}{2}}\left(\int_{\left\{u_{n}>k\right\}} u_{n}^{\gamma-1}\left|\nabla u_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\int_{\left\{u_{n}>k\right\}} u_{n}^{2 q-\gamma+1}\right)^{\frac{1}{2}}\left(\frac{1}{\gamma \alpha} \int_{\left\{u_{n}>k\right\}} f\right)^{\frac{1}{2}}
\end{aligned}
$$

Since u_{n} is bounded in $L^{s}(\Omega)$, then $2 q-\gamma+1 \leq s$ is equivalent to $m \geq$ $\frac{N(2 q-\gamma+1)}{4 q-2 \gamma+2+N(q+\gamma+1)}$, and we thus have

$$
\begin{equation*}
\int_{\left\{u_{n}>k\right\}} u_{n}^{q}\left|\nabla u_{n}\right| \leq C\left(\int_{\left\{u_{n}>k\right\}} f\right)^{\frac{1}{2}} \tag{28}
\end{equation*}
$$

Now let $\varphi \in C_{c}^{1}(\Omega), \varphi \geq 0, \varphi \equiv 1$ on $\omega \subset \subset \Omega$ and E be a measurable subset of Ω, using (28) and Lemma 5.1, we obtain

$$
\begin{aligned}
\int_{E \cap \omega} u_{n}^{q}\left|\nabla u_{n}\right| & \leq \int_{E} u_{n}^{q}\left|\nabla u_{n}\right| \varphi \leq \int_{\left\{u_{n}>k\right\}} u_{n}^{q}\left|\nabla u_{n}\right| \varphi+k^{q} \int_{E}\left|\nabla u_{n}\right| \varphi \\
& \leq C\|\varphi\|_{L^{\infty}}\left(\int_{\left\{u_{n}>k\right\}} f\right)^{\frac{1}{2}}+\|\varphi\|_{L^{\infty}} k^{q} \operatorname{meas}(E)^{\frac{1}{2}}\left(\int_{\omega}\left|\nabla u_{n}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Taking the limit as meas (E) tends to zero, k tends to infinity and since $u_{n}^{q}\left|\nabla u_{n}\right|$ converges to $u^{q}|\nabla u|$ almost everywhere, we easily verify thanks to Vitali's theorem that

$$
\begin{equation*}
u_{n}^{q}\left|\nabla u_{n}\right| \text { converge strongly to } u^{q}|\nabla u| \text { in } L_{l o c}^{1}(\Omega) . \tag{29}
\end{equation*}
$$

Therefore, putting together (29), Lemma 2.2 and Lemma 5.1, we conclude the proof of Theorem 6.5.

References

[1] L. Boccardo, A contribution to the theory of quasilinear elliptic equations and application to the minimization of integral functionals, Milan J. Math. 79 (2011), no. 1, 193-206. https://doi.org/10.1007/s00032-011-0150-y
[2] L. Boccardo, L. Moreno-Mérida, and L. Orsina, A class of quasilinear Dirichlet problems with unbounded coefficients and singular quadratic lower order terms, Milan J. Math. 83 (2015), no. 1, 157-176. https://doi.org/10.1007/s00032-015-0232-3
[3] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581-597. https: //doi.org/10.1016/0362-546X(92)90023-8
[4] L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 363-380. https://doi.org/ 10.1007/s00526-009-0266-x
[5] J. Carmona and P. J. Martínez-Aparicio, A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud. 16 (2016), no. 3, 491-498. https://doi.org/ 10.1515/ans-2015-5039
[6] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222. https: //doi.org/10.1080/03605307708820029
[7] L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), no. 3-4, 181-195.
[8] L. M. De Cave, R. Durastanti, and F. Oliva, Existence and uniqueness results for possibly singular nonlinear elliptic equations with measure data, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, Paper No. 18, 35 pp. https://doi.org/10.1007/ s00030-018-0509-7
[9] L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal. 128 (2015), 391-411. https://doi.org/10.1016/j. na.2015.08.005
[10] _, On the regularizing effect of some absorption and singular lower order terms in classical Dirichlet problems with L^{1} data, J. Elliptic Parabol. Equ. 2 (2016), no. 1-2, 73-85. https://doi.org/10.1007/BF03377393
[11] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983. https://doi.org/10.1007/978-3-642-61798-0
[12] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730. https://doi.org/10.2307/2048410
[13] L. Moreno-Mérida, A quasilinear Dirichlet problem with quadratic growth respect to the gradient and L^{1} data, Nonlinear Anal. 95 (2014), 450-459. https://doi.org/10.1016/ j.na.2013.09.014
[14] F. Oliva and F. Petitta, On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var. 22 (2016), no. 1, 289-308. https://doi.org/10.1051/cocv/ 2015004
[15] L. Orsina and F. Petitta, A Lazer-McKenna type problem with measures, Differential Integral Equations 29 (2016), no. 1-2, 19-36. http://projecteuclid.org/euclid.die/ 1448323251
[16] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre \grave{a} coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc., fasc. 1, 189-258.
[17] C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), no. 1, 53-63. https://doi.org/10.1007/BF01214274
[18] S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4, 909-922. https: //doi.org/10.1007/s00526-013-0604-x

Amine Marah
Faculté des Sciences Et Techniques Morocco
Université Hassan 1
B.P. 764. Settat, Morocco

Email address: aminemarah90@gmail.com
Hicham Redwane
Faculté des Sciences Juridiques 'Economiques et Sociales
Université Hassan 1
B.P. 764. Settat, Morocco

Email address: redwane_hicham@yahoo.fr

