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INFINITELY MANY SOLUTIONS FOR A CLASS OF

MODIFIED NONLINEAR FOURTH-ORDER ELLIPTIC

EQUATIONS ON R
N

Guofeng Che and Haibo Chen

Abstract. This paper is concerned with the following fourth-order el-
liptic equations

△
2u−∆u+ V (x)u−

κ

2
∆(u2)u = f(x, u), in R

N,

where N ≤ 6, κ ≥ 0. Under some appropriate assumptions on V (x)
and f(x, u), we prove the existence of infinitely many negative-energy
solutions for the above system via the genus properties in critical point
theory. Some recent results from the literature are extended.

1. Introduction

Consider the following fourth-order elliptic equations of the form

(1.1) α△2u−∆u+ V (x)u − κ

2
∆(u2)u = f(x, u), x ∈ R

N ,

where △2 := △(△) is the biharmonic operator, α, κ ∈ R.
When α = 1, κ = 0, we get the following fourth-order elliptic equation

(1.2) △2u−∆u+ V (x)u = f(x, u), x ∈ R
N .

Many authors studied Eq. (1.2) on a bounded domain as follows

(1.3)

{

△2u−∆u = f(x, u), in Ω,
u = ∆u = 0, on ∂Ω,

where Ω is a bounded domain of RN . In [1], An and Liu used the Mountain
Pass Theorem to get the existence results for Eq. (1.3). In [23], by using the
sign-changing critical theorems that if f(x, t) is odd in t and satisfies some
additional conditions, Zhou got infinitely many sign-changing solutions. While
without symmetry, Wang and Shen in [15] obtained the multiplicity result by
perturbation theory. In [22], Zhang and Wei obtained the existence of infinitely
many solutions via variant fountain theorem established in Zou [24] when the
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nonlinearity f(x, u) involves a combination of superlinear and asymptotically
linear terms.

Fourth-order elliptic equation on unbounded domains also attract a lot of
attention. For instance, see [2, 17, 18, 19] and the references therein. In [19],
by using the Mountain Pass Theorem and symmetric Mountain Pass Theorem,
Yin and Wu obtained infinitely many high energy solutions for problem (1.2)
under the condition that f(x, u) is superlinear at infinity in u. However, for
the whole space R

N case, the main difficulty of this problem is the lack of
compactness for the Sobolev’s embedding theorem. In order to overcome this
difficulty, they assumed that the potential V (x) satisfies
(V1) V ∈ C(RN ,R) satisfies inf

x∈RN

V (x) ≥ a > 0, where a > 0 is a constant.

Moreover, for any M > 0, meas{x ∈ R
N : V (x) ≤ M} < ∞, where meas

denotes the Lebesgue measure in R
N .

Later, under the condition (V1), when f(x, u) satisfies more weaker and
generic conditions, Ye and Tang [18] obtained the existence of infinitely many
large-energy and small-energy solutions, which unified and generalized the re-
sults in [19], besides, the sublinear case was also considered by them.

Eq. (1.1) with α = 0 is a modified nonlinear Schrödinger equation (also called
quasilinear Schrödinger equation), whose solutions are related to the existence
of solitary wave solutions for the following quasilinear Schrödinger equation

(1.4) i
∂ψ

∂t
= −△ψ + V (x)ψ − κ△(ρ(|ψ|2))ρ′(|ψ|2)− f(x, ψ), x ∈ R

N ,

where V (x) is a given potential, κ is a real constant, ρ and f are real functions.
We would like to mention that quasilinear equation of the form (1.4) arises in
various branches of mathematical physics and has been derived as models of
several physics phenomenon corresponding to various types of nonlinear terms
ρ, such as see [3, 4, 8].

The semilinear case (κ = 0) has been studied extensively in recent years
with a huge variety of conditions on the potential V (x) and the nonlinear-
ity f , see for example [10, 13] and the references therein. Compared to the
semilinear problem, the quasilinear case (κ 6= 0) becomes more complicated
since the effects of the quasilinear and non-convex term △(u2)u. One of the
main difficulties of the quasilinear problem is that there is no suitable space on
which the energy functional is well defined and belongs to C1-class except for
N = 1 (see [9]). There has been several ideas and approaches used in recent
years to overcome the difficulties such as by minimizations [5, 9], the Nehari or
Pohozaev manifold [6, 12] and change of variables [20, 21].

Inspired by the above facts, the aim of this paper is to study the existence of
nontrivial solution and infinitely many negative-energy solutions for problem
(1.1) with α = 1 via the genus theory in critical point theory. To the best of
our knowledge, there has been few works concerning this case up to now.

We assume that V (x) satisfies (V1) and f(x, u) satisfy the following hypothe-
ses.
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(f1) f ∈ C(RN ×R,R), and there exist 1 < α1, α2 < 2 and positive functions

c1 ∈ L
2

2−α1 (RN ,R), c2 ∈ L
2

2−α2 (RN ,R) such that

|f(x, u)| ≤ α1c1(x)|u|α1−1 + α2c2(x)|u|α2−1, ∀(x, u) ∈ R
N × R.

(f2) There exist a bounded open set J ⊂ R
N and three constants a1, a2 > 0

and a3 ∈ (1, 2) such that

F (x, u) ≥ a2|u|a3 , ∀(x, u) ∈ J × [−a1, a1],
where F (x, u) =

∫ u

0
f(x, s)ds.

(f3) f(x, u) = −f(x,−u) for all (x, u) ∈ R
N × R.

Now, we state our main results.

Theorem 1.1. Assume conditions (V1) and (f1)-(f2) hold, then problem (1.1)
possesses at least one nontrivial solution.

Theorem 1.2. Assume conditions (V1) and (f1)-(f3) hold, then problem (1.1)
possesses infinitely many solutions (uk) such that

1

2

∫

RN

(|△uk|2+|∇uk|2+V (x)u2k)dx+
κ

2

∫

RN

u2k|∇uk|2dx−
∫

RN

F (x, uk)dx→ 0−

as k → ∞.

Evidently, the assumption (f2) holds if the following conditions holds:
(f ′

2) There exist a bounded open set J ⊂ R
N and three constants a1, a2 > 0

and a3 ∈ (1, 2) such that

f(x, u)u ≥ a2a3|u|a3 , ∀(x, u) ∈ J × [−a1, a1].
Therefore, by Theorems 1.1 and 1.2, we have the following corollary.

Corollary 1.1. Assume conditions (V1), (f1) and (f ′
2) hold, then problem

(1.1) possesses at least one nontrivial solution. If additionally, (f3) holds, then
problem (1.1) possesses infinitely many solutions (uk) such that

1

2

∫

RN

(|△uk|2+|∇uk|2+V (x)u2k)dx+
κ

2

∫

RN

u2k|∇uk|2dx−
∫

RN

F (x, uk)dx→ 0−

as k → ∞.

By Theorems 1.1 and 1.2, we also have the following corollaries.

Corollary 1.2. Assume (V1) and the following conditions hold:
(f4) F (x, u) = b(x)G(u),

where G(u) ∈ C1(R,R), b ∈ C1(RN ,R)
⋂

L
2

2−γ1 (RN ,R) for the constant γ1 ∈
(1, 2), and some x0 > 0 such that b(x0) > 0.

(f5) There exist constants M, m > 0 and γ0 ∈ (1, 2) such that

m|u|γ0 ≤ G(u) ≤M |u|γ1 , ∀ u ∈ R,

Then problem (1.1) possesses at least one nontrivial solution.
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Corollary 1.3. Assume (V1), (f4)-(f5) and G(−u) = G(u) hold for any u ∈ R,

then problem (1.1) possesses infinitely many solutions (uk) such that

1

2

∫

RN

(|△uk|2+|∇uk|2+V (x)u2k)dx+
κ

2

∫

RN

u2k|∇uk|2dx−
∫

RN

F (x, uk)dx→ 0−

as k → ∞.

Remark 1.1. It is well known that for the quasilinear Schrödinger equation
problem (1.1), we must overcome the difficulty that the energy functional is
not well defined due to the non-convex term △(u2)u , while in this paper, under
the assumptions (V1) and N ≤ 6, we prove

∫

RN △(u2)u2 < ∞, which implies
the energy functional of problem (1.1) is well defined on our working space.

Remark 1.2. It is not difficult to find the function f(x, u) satisfy all the condi-
tions of Theorem 1.2. For example, let

f(x, u) =
7 sin2 x1
6(1 + e|x|)

|u|−5

6 u+
3 cos2 x1
2(1 + e|x|)

|u|−1

2 u,

where x = {x1, x2, . . . , xN}. Then,

|f(x, u)| ≤ 7 sin2 x1
6(1 + e|x|)

|u| 16 +
3 cos2 x1
2(1 + e|x|)

|u| 12 , ∀ (x, u) ∈ (RN × R),

and

F (x, u) =
sin2 x1
1 + e|x|

|u| 76 +
cos2 x1
1 + e|x|

|u| 32

≥ cos2 1

1 + e
|u| 32 , ∀(x, u) ∈ J × [−1.1],

where
7

6
= α1 < α2 =

3

2
, c1(x) =

sin2 x1
1 + e|x|

, c2(x) =
cos2 x1
1 + e|x|

,

and

a1 = 1, a2 =
cos2 1

1 + e
, a3 =

3

2
, J = B(0, 1).

The remainder of this paper is as follows. In Section 2, some preliminary
results are presented. In Section 3, we give the proofs of our main results.

Notation 1.1. Throughout this paper, we shall denote by | · | the Lr-norm
and C various positive generic constants, which may vary from line to line.
2∗ = 2N

N−4 for N ≥ 5 and 2∗ = +∞ for N ≤ 4, is the critical Sobolev exponent.

Also if we take a subsequence of a sequence {un} we shall denote it again {un}.

2. Variational setting and preliminaries

Let
H2(RN ) := {u ∈ L2(RN ) : ∇u,△u ∈ L2(RN )},

E := {u ∈ H2(RN )|
∫

RN

V (x)u2dx < +∞}.
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Then, under the conditions (V1), E is a Hilbert space with the following inner
product and norm

〈u, v〉 =
∫

RN

(∆u∆v +∇u∇v + V (x)uv)dx,

‖u‖ = (

∫

RN

(|∆u|2 + |∇u|2 + V (x)|u|2)dx) 1

2 .

Moreover, we have the following compactness lemma from [2].

Lemma 2.1 ([2, Lemma 2.1]). Under the assumption (V1), the embedding

E →֒ Lr(RN ) is continuous for 2 ≤ r ≤ 2∗ and E →֒ Lr(RN ) is compact for

2 ≤ r < 2∗.

Lemma 2.2. Under assumption (V1), (f1) and N ≤ 6, the functional I : E →
R defined by

(2.1) I(u) =
1

2
‖u‖2 + κ

2

∫

RN

u2|∇u|2dx−
∫

RN

F (x, u)dx

is well defined and of class C1(E,R) and

(2.2) 〈I ′(u), v〉 = (u, v) + κ

∫

RN

(uv|∇u|2 + u2∇u∇v)dx−
∫

RN

f(x, u)vdx.

Moreover, the critical points of I in E are solutions of problem (1.1).

Proof. From (f1), one has

(2.3) |F (x, u)| ≤ c1(x)|u|α1 + c2(x)|u|α2 , ∀(x, u) ∈ R
N × R.

Then, for any u ∈ E, it follows from (V1), (2.3) and the Hölder inequality that
(2.4)

∫

RN

|F (x, u)|dx ≤
∫

RN

[

c1(x)|u|α1 + c2(x)|u|α2

]

dx

≤
2

∑

i=1

a
−αi

2

(

∫

RN

|ci(x)|
2

2−αi dx
)

2−αi

2

(

∫

RN

V (x)|u|2dx
)

αi

2

≤
2

∑

i=1

a
−αi

2 ||ci|| 2

2−αi

||u||αi .

Next, we prove
∫

RN u
2|∇u|2dx < +∞ for every u ∈ E. Firstly, we choose two

numbers p = 3 and t = p
p−1 . Then

1
p + 1

t = 1, 2 ≤ 2p ≤ 2∗ and 2 ≤ 2t ≤ 2∗ for

N ≤ 6. Then by Lemma 2.1 and the assumption of (V1), we have

‖u‖2H2 =

∫

RN

(|∆u|2 + |∇u|2 + |u|2)dx

≤ C

∫

RN

(|∆u|2 + |∇u|2 + V (x)|u|2)dx = C‖u‖2,

where C = max{1, 1
a0

}.
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Since H2(RN ) = W 2,2(RN ) →֒ W 1,r(RN ), 2 ≤ r ≤ 2∗ and H2(RN ) →֒
Lr(RN ), 2 ≤ r ≤ 2∗, we have

∫

RN

u2pdx < +∞,

∫

RN

|∇u|2tdx < +∞.

By Hölder inequality and Lemma 2.1, we have

(2.5)

∫

RN

u2|∇u|2dx ≤
(

∫

RN

u2pdx
)

1

p

(

∫

RN

|∇u|2tdx
)

1

t < +∞,

It follows from (2.4) and (2.5) that I is well defined on E.
Now, we prove that I ∈ C1(E,R). Set

Φ1(u) :=
1

2

∫

RN

u2|∇u|2dx, Φ2(u) :=

∫

RN

F (x, u)dx.

Then I(u) = 1
2‖u‖2+κΦ1(u)−Φ2(u). In order to prove I ∈ C1(E,R), we only

to prove that Φi ∈ C1(E,R), i = 1, 2. By the proof of Lemma 2.2 in [2], it is
easy to verify that Φ1 ∈ C1(E,R). Next, we prove (2.2) and Φ2 ∈ C1(E,R).

For any function θ : RN → (0, 1), by (f1) and the Hölder inequality, we have

(2.6)

∫

RN

max
t∈[0,1]

|f(x, u(x) + tθ(x)v(x))v(x)|dx

=

∫

RN

max
t∈[0,1]

|f(x, u(x) + tθ(x)v(x))||v(x)|dx

≤
2

∑

i=1

αi

∫

RN

(ci(x)|u(x) + tθ(x)v(x)|αi−1)|v(x)|dx

≤
2

∑

i=1

αi

∫

RN

(ci(x)(|u(x)|αi−1 + |v(x)|αi−1)|v(x)|dx

≤
2

∑

i=1

αia
−αi

2

(

∫

RN

|ci(x)|
2

2−αi dx
)

2−αi

2

(

∫

RN

V (x)|u(x)|2dx
)

αi−1

2

×
(

∫

RN

V (x)|v(x)|2dx
)

1

2

+

2
∑

i=1

αia
−αi

2

(

∫

RN

|ci(x)|
2

2−αi dx
)

2−αi

2

(

∫

RN

V (x)|v(x)|2dx
)

αi

2

≤
2

∑

i=1

αia
−αi

2 ||ci|| 2

2−αi

(||u||αi−1 + ||v||αi−1)||v||

< +∞.
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Then, by (2.1), (2.6) and Lebesgue’s Dominated Convergence Theorem, we
have
(2.7)

〈I ′(u), v〉

= lim
t→0+

I(u+ tv)− I(u)

t

= lim
t→0+

[

(u, v) +
t

2
||v||2 + κ

2

∫

RN

(

t3v2|∇v|2 + 2t2v2∇u∇v + 2t2uv|∇v|2

+ 4tuv∇u∇v + tu2|∇v|2 + tv2|∇u|2 + 2u2∇u∇v + 2uv|∇u|2dx
)

−
∫

RN

f(x, u+ θtv)vdx
]

= (u, v) + κ

∫

RN

(uv|∇u|2 + u2∇u∇v)dx−
∫

RN

f(x, u)vdx,

which implies (2.2) holds. Now, we show that Φ2 ∈ C1(E,R). Let un → u in
E, then un → u in L2(RN ) and

(2.8) lim
n→∞

un = u a.e. x ∈ R
N .

Now, we claim that

(2.9) lim
n→∞

∫

RN

|f(x, un)− f(x, u)|2dx = 0.

Otherwise, there exist a constant ε0 > 0 and a sequence {uni} such that

(2.10)

∫

RN

|f(x, uni)− f(x, u)|2dx ≥ ε0, ∀i ∈ N.

In fact, since un → u in L2(RN ), passing to a subsequence if necessary, it can

be assumed that
∞
∑

i=1

||uni − u||22 < +∞. Set ω(x) = (
∞
∑

i=1

||uni − u||22)
1

2 , then

ω ∈ L2(RN ). Evidently

(2.11)

|f(x, uni)− f(x, u)|2

≤ 2|f(x, uni)|2 + 2|f(x, u)|2

≤ 4α2
1|c1(x)|2

[

|uni|2(α1−1) + |u|2(α1−1)
]

+ 4α2
2|c2(x)|2

[

|uni|2(α2−1) + |u|2(α2−1)
]

≤
2

∑

j=1

(4αj + 4)α2
j |cj(x)|2

[

|uni − u|2(αj−1) + |u|2(αj−1)
]

≤
2

∑

j=1

(4αj + 4)α2
j |cj(x)|2

[

|ω(x)|2(αj−1) + |u|2(αj−1)
]

:= h(x), ∀ i ∈ N, x ∈ R
N
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and

(2.12)

∫

RN

h(x)dx

=

2
∑

j=1

(4αj + 4)α2
j

∫

RN

|cj(x)|2
[

|ω(x)|2(αj−1) + |u|2(αj−1)
]

dx

≤
2

∑

j=1

(4αj + 4)α2
j ||cj ||2 2

2−αj

(

||ω||2(αj−1)
2 + ||u||2(αj−1)

2

)

< +∞.

It follows from (2.11), (2.12) and the Lebesgue’s Dominated Convergence The-
orem that (2.9) holds.

Then, by (2.2), (2.9) and Φ1 ∈ C1(E,R), we have

|
〈

I ′(un)− I ′(u), v
〉

|

=
∣

∣(un − u, v) + κ

∫

RN

(

|un|2∇un − |u|2∇u
)

· ∇vdx

+ κ

∫

RN

(

|∇un|2un − |∇u|2u
)

· vdx−
∫

RN

[f(x, un)− f(x, u)]vdx
∣

∣

≤ ||un − u||||v||+ |κ
∫

RN

(

|un|2∇un − |u|2∇u
)

· ∇vdx

+ κ

∫

RN

(

|∇un|2un − |∇u|2u
)

vdx|+ a−
1

2

(

∫

RN

|f(x, un)−f(x, u)|2dx
)

1

2 ||v||

→ 0 as n→ ∞,

which implies that I ∈ C1(E,R). Moreover, by a standard argument, it is easy
to verify that the critical points of I in E are solutions of problem (1.1) (see
[16]). The proof is complete. �

Lemma 2.3. Assume that (V1), (f1) and N ≤ 6 hold. Then I is bounded from

below and satisfies the (PS) condition.

Proof. By Lemma 2.1, (f1), the Sobolev embedding theorem and the Hölder
inequality, we have

(2.13)

I(u) =
1

2
‖u‖2 + κ

2

∫

RN

u2|∇u|2dx−
∫

RN

F (x, u)dx

≥ 1

2
‖u‖2 −

∫

RN

F (x, u)dx

≥ 1

2
‖u‖2 −

∫

RN

c1(x)|u|α1dx−
∫

RN

c2(x)|u|α2dx

≥ 1

2
‖u‖2 −

2
∑

i=1

a
−αi

2 ||ci|| 2

2−αi

||u||αi ,
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which implies that I(u) → +∞, as ||u|| → ∞, since α1, α2 ∈ (1, 2). Conse-
quently, I is bounded from below.

Next, we prove that I satisfies the (PS) condition. Assume that {un} is a
(PS) sequence of I such that I(un) is bounded and ||I ′(un)|| → 0 as n → ∞.
Then, it follows from (2.13) that there exists a constant C > 0 such that

(2.14) ||un||2 ≤ a
−1

2 ||un|| ≤ C, n ∈ N.

Then by Lemma 2.1, there exists u ∈ E such that

un ⇀ u in E,

(2.15) un → u in Ls(RN ), s ∈ [2, 2∗),

un → u a.e. R
N .

Therefore

(2.16)

∫

RN

(

|un|2∇un − |u|2∇u
)

· ∇(un − u)dx

=

∫

RN

(

|un|2 − |u|2
)

∇un∇(un − u)dx+

∫

RN

|u|2|∇(un − u)|2dx

≥
∫

RN

(

|un|2 − |u|2
)

∇un∇(un − u)dx

≥ −
∫

RN

(|un − u|(un|+ |u|)|∇un||∇(un − u)|)dx

≥ −
(

∫

RN

|un − u|6dx
)

1

6

(

∫

RN

(|un|+ |u|)6dx
)

1

6

×
(

∫

RN

|∇un|3dx
)

1

3

(

∫

RN

|∇(un − u)|3dx
)

1

3

≥ − C||un − u||6 → 0

as n→ ∞. Analogously, we have

(2.17)

∫

RN

(

|∇un|2un − |∇u|2u
)

· (un − u)dx

=

∫

RN

(

|∇un|2 − |∇u|2
)

u(un − u)dx+

∫

RN

|∇un|2|(un − u)|2dx

≥ −
∫

RN

(

|∇un|2 + |∇u|2
)

|un||un − u|dx

≥ −
(

∫

RN

|un − u|6dx
)

1

6

(

∫

RN

|un|6dx
)

1

6

(

∫

RN

|∇un|3dx
)

2

3

−
(

∫

RN

|un − u|6dx
)

1

6

(

∫

RN

|un|6dx
)

1

6

(

∫

RN

|∇u|3dx
)

2

3

≥ − C||un − u||6 → 0 as n→ ∞.
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On the other hand, for any given ε > 0, by (f1), we can choose Rε > 0 such
that

(2.18)
(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi

2 < ε, i = 1, 2.

It follows from (2.15) that there exists n0 > 0 such that

(2.19)

∫

|x|≤Rε

|un − u|2dx < ε2 for n ≥ n0.

Therefore, by (f1), (2.14), (2.19) and the Hölder inequality, for any n ≥ n0,
one has

(2.20)

∫

|x|≤Rε

|f(x, un)− f(x, u)||un − u|dx

≤
(

∫

|x|≤Rε

|f(x, un)− f(x, u)|2dx
)

1

2

(

∫

|x|≤Rε

|un − u|2dx
)

1

2

≤ε
[

∫

|x|≤Rε

2(|f(x, un)|2 + |f(x, u)|2)dx
]

1

2

≤ε
[

4
2

∑

i=1

α2
i

∫

|x|≤Rε

|ci(x)|2(|un|2(αi−1) + |u|2(αi−1))dx
]

1

2

≤Cε
[

2
∑

i=1

α2
i ||ci||2 2

2−αi

(

||un||2(αi−1)
2 + ||u||2(αi−1)

2

)]
1

2

≤Cε
[

2
∑

i=1

α2
i ||ci||2 2

2−αi

(

C2(αi−1) + ||u||2(αi−1)
2

)]
1

2 .

For another, for n ∈ N, it follows from (f1), (2.14), (2.18) and Hölder inequality
that

∫

|x|>Rε

|f(x, un)− f(x, u)||un − u|dx(2.21)

≤
2

∑

i=1

αi

∫

|x|>Rε

|ci(x)|
(

|un|αi−1 + |u|αi−1
)(

|un|+ |u|
)

dx

≤ 2

2
∑

i=1

αi

∫

|x|>Rε

|ci(x)|
(

|un|αi + |u|αi

)

dx

≤ 2

2
∑

i=1

αi

(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi

2

(

||un||αi

2 + ||u||αi

2

)

≤ 2

2
∑

i=1

αi

(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi

2

(

Cαi + ||u||αi

2

)
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≤ 2ε

2
∑

i=1

αi

(

Cαi + ||u||αi

2

)

.

Since ε is arbitrary, combining (2.20) and (2.21), we have

(2.22) lim
n→∞

∫

RN

(f(x, un)− f(x, u))(un − u)dx = 0.

Then by (2.2), (2.16), (2.17), (2.22) and the weak convergence of {un}, one has
on(1) = 〈I ′(un)− I ′(u), un − u〉

=

∫

RN

|△(un − u)|2dx +

∫

RN

|∇(un − u)|2dx+

∫

RN

V (x)(un − u)2dx

+ κ

∫

RN

(

|un|2∇un − |u|2∇u
)

· ∇(un − u)dx

+ κ

∫

RN

(

|∇un|2un − |∇u|2u
)

· (un − u)dx

−
∫

RN

(f(x, un)− f(x, u))(un − u)dx

≥ ||un − u||2 + κ

∫

RN

(u2n − u2)∇u∇(un − u)dx

+ κ

∫

RN

(|∇un|2 − |∇u|2)u(un − u)dx

−
∫

RN

(f(x, un)− f(x, u))(un − u)dx

= ||un − u||2 + on(1),

which implies that un → u in E. Therefore, I satisfies the (PS) condition.
The proof is complete. �

Theorem 2.1 ([7]). Let E be a real Banach space and I ∈ C1(E,R) satisfy the

(PS) condition. If I is bounded from below, then c = inf
E
I is a critical value of

I.

In order to find the multiplicity of nontrivial critical points of I, we will use
the “genus” properties, so we recall the following definitions and results (see
[11]).

Let E be a Banach space, c ∈ R and I ∈ C1(E,R). Set

Σ = {A ⊂ E \ {0} : A is closed in E and symmetric with respect to 0},

Kc = {u ∈ E : I(u) = c, I ′(u) = 0}, Ic = {u ∈ E : I(u) ≤ c}.
Definition 2.1. For A ∈ Σ, we say genus of A is n (denoted by γ(A) = n) if
there is an odd map ϕ ∈ C(A,RN \ {0}) and n is the smallest integer with this
property.
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Theorem 2.2. Let E be an even C1 functional on E and satisfy the (PS)
condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈Σn

sup
u∈A

I(u).

(i) If Σn 6= ∅ and cn ∈ R, then cn is a critical value of I.
(ii) If there exists r ∈ N such that cn = cn+1 = · · · = cn+r = c ∈ R and

c 6= I(0), then γ(Kc) ≥ r + 1.

3. Proofs of main results

Proof of Theorem 1.1. By Lemma 2.2 and Lemma 2.3, the conditions of The-
orem 2.1 are satisfied. Thus, c = inf

E
I(u) is a critical value of I, that is, there

exists a critical point u∗ such that I(u∗) = c. Now, we show that u∗ 6= 0.

Let u ∈ (W 1,2
0 (J)

⋂

E) \ {0} and ||u||∞ ≤ 1, then by (2.1) and (f2), we have

(3.1)

I(tu) =
t2

2
‖u‖2 + κt4

2

∫

RN

u2|∇u|2dx−
∫

RN

F (x, tu)dx

=
t2

2
‖u‖2 + κt4

2

∫

RN

u2|∇u|2dx−
∫

J

F (x, tu)dx

≤ t2

2
‖u‖2 + κt4

2

∫

RN

u2|∇u|2dx− a2t
a3

∫

J

|u|a3dx,

where 0 < t < a1, a1 be given in (f2). Since 1 < a3 < 2, it follows from (3.1)
that I(tu) < 0 for t > 0 small enough. Therefore, I(u∗) = c < 0, that is, u∗

is a nontrivial critical point of I, and so u∗ is a nontrivial solution of problem
(1.1). The proof is complete. �

Proof of Theorem 1.2. By Lemma 2.2 and Lemma 2.3, I ∈ C1(E,R) is bounded
from below and satisfies the (PS)-condition. It follows from (2.1) and (f3) that
I is even and I(0) = 0. In order to apply Theorem 2.2, we now show that for
any n ∈ N, there exists ε > 0 such that

(3.2) γ(I−ε) ≥ n.

For any n ∈ N, we take n disjoint open sets Ji such that
n
⋃

i=1

Ji ⊂ J.

For i = 1, 2, . . . , n, let ui ∈ (W 1,2
0 (Ji)

⋂

E) \ {0}, ||ui||∞ ≤ ∞ and ||ui|| = 1,
and

En = span{u1, u2, . . . , un}, Sn = {u ∈ En : ||u|| = 1}.
Then, for any u ∈ En, there exist λi ∈ R, i = 1, 2, . . . , n such that

(3.3) u(x) =

n
∑

i=1

λiui(x), x ∈ R
N .
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Then we get

(3.4) ||u||a3
=

(

∫

RN

|u|a3dx
)

1

a3 =
(

n
∑

i=1

|λi|a3

∫

Ji

|u|a3dx
)

1

a3 ,

and

(3.5)

‖u‖2 =
∫

RN

(|∆u|2 + |∇u|2 + V (x)|u|2)dx

=

n
∑

i=1

λ2i

∫

Ji

(|∆ui|2 + |∇ui|2 + V (x)|ui|2)dx

≤
n
∑

i=1

λ2i

∫

RN

(|∆ui|2 + |∇ui|2 + V (x)|ui|2)dx

=

n
∑

i=1

λ2i ||ui||2

=
n
∑

i=1

λ2i .

Since all norms are equivalent in a finite dimensional normed space, so there
exists d1 > 0 such that

(3.6) d1||u|| ≤ ||u||a3
for u ∈ En.

Then by (2.1), (2.5), (f2), (3.3)-(3.6) and Sobolev embedding inequality, for
u ∈ Sn, we have

(3.7)

I(tu) =
t2

2
‖u‖2 + κt4

2

∫

RN

u2|∇u|2dx−
∫

RN

F (x, tu)dx

=
t2

2
‖u‖2 + κt4

2

∫

RN

u2|∇u|2dx−
n
∑

i=1

∫

Ji

F (x, tλiui)dx

≤ t2

2
‖u‖2 + κt4

2
τ22pτ

2
2t‖u‖4 − a2t

a3

n
∑

i=1

|λi|a3

∫

Ji

|ui|a3dx

=
t2

2
‖u‖2 + κt4

2
τ22pτ

2
2t‖u‖4 − a2t

a3 ||u||a3

a3

≤ t2

2
‖u‖2 + κt4

2
τ22pτ

2
2t‖u‖4 − a2(d1t)

a3 ||u||a3

=
t2

2
+
κt4

2
τ22pτ

2
2t − a2(d1t)

a3 ,

where τr is the best constant for the embedding of E into Lr(RN ), r ∈ [2, 2∗].
Since 0 < t ≤ a1 and 1 < a3 < 2, then it follows from (3.7) that there exist
ε > 0 and δ > 0 such that

(3.8) I(δu) < −ε for u ∈ Sn.



908 G. CHE AND H. CHEN

Let

Sδ
n = {δu : u ∈ Sn}, Ω =

{

(λ1, λ2, . . . , λn) ∈ R
N :

n
∑

i=1

λ2i < δ2
}

.

It follows from (3.8) that

I(u) < −ε for u ∈ Sδ
n,

which, together with the fact that I ∈ C1(E,R) and is even, implies that

(3.9) Sδ
n ⊂ I−ε ∈ Σ.

On the other hand, by (3.3) and (3.5), there exists an odd homeomorphism
mapping φ ∈ C(Sδ

n, ∂Ω). By some properties of the genus (see 30 of Proposi-
tions of 7.5 and 7.7 in [11]), we have

(3.10) γ(I−ε) ≥ γ(Sδ
n) = n.

Thus, the proof of (3.2) holds. Set

(3.11) cn = inf
A∈Σn

sup
u∈A

I(u).

It follows from (3.10) and the fact I is bounded from below on E that −∞ <
cn ≤ −ε < 0, that is to say, for any n ∈ N, cn is a real negative number. By
Theorem 2.2, I has infinitely many nontrivial critical points, therefore, problem
(1.1) possesses infinitely many nontrivial solutions. The proof is complete. �
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