Upper-Lower Solutions for Singular Elliptic

Equations under Nonlinear Boundary Conditions

In KYUNG Ahn

1. Introduction

Our interest is to study the upper-lower solution method for degenerate elliptic equations under the nonlinear Robin-type boundary condition. The method of upper-lower solutions is well known for uniformly elliptic operators under the usual boundary condition. (See [6], [2].)

In this paper, we will prove the upper-lower solution method for singular elliptic equations under the nonlinear boundary conditions. The technique employs Schauder's fixed point theorem, which is a new justification of the upper-lower solution method.

2. Results

Throughout this paper, let $\mathbf{K}=C(\bar{\Omega})^{+}$be the positive cone of the ordered Banach space $C(\bar{\Omega})$ where Ω is a bounded region in \mathbf{R}^{n} and denote the ordered interval $\left[\left[u_{1}, u_{2}\right]\right]:=\left\{u \in C(\bar{\Omega}): u_{1} \leq u \leq\right.$ u_{2} for $\left.u_{1}, u_{2} \in C(\bar{\Omega})\right\}$.

Let G be Green's function: $-\Delta G=\delta(x, y)$. We denote Green's functions under the Dirichlet and the Robin condition $+\lambda \frac{\partial}{\partial n}=0$, $\lambda>0$, by G_{D} and $G_{R, \lambda}$, respectively. Then we have the following lemma.

Lemma 1.
(i) $\frac{\partial G_{D}}{\partial n}<0$ and $\frac{\partial G_{R, \lambda}}{\partial n}<0$

Received by the editors on June 30, 1994.
1980 Mathematics subject classifications: Primary 35J60.
(ii) $\left\|G_{R, \lambda}-G_{D}\right\|_{C^{2, \alpha}(\bar{\Omega})}=O(\lambda),\left\|G_{R, \lambda}-G_{D}\right\|_{W^{1, p}(\partial \Omega)}=O(\lambda)$, for an arbitrary $p>0, \alpha \in(0,1)$, as $\lambda \rightarrow 0^{+}$.

Proof. (i) See [5].
(ii) First note $-\Delta\left(G_{R, \lambda}-G_{D}\right)=\delta-\delta=0 \quad$ in Ω and $\left(G_{R, \lambda}-G_{D}\right)+$ $\lambda\left(\frac{\partial\left(G_{R, \lambda}-G_{D}\right)}{\partial n}\right)=G_{R, \lambda}+\lambda \frac{\partial G_{R, \lambda}}{\partial n}-\lambda \frac{\partial G_{D}}{\partial n}=-\lambda \frac{\partial G_{D}}{\partial n}>0$ on $\partial \Omega$ by (i). Let $x_{0} \in \bar{\Omega}$ be such that $\left(G_{R, \lambda}-G_{D}\right)\left(x_{0}\right)=\max _{\bar{\Omega}}\left(G_{R, \lambda}-G_{D}\right)$. The strong maximum principle implies that $x_{0} \in \partial \Omega$ and therefore $G_{R, \lambda}-$ $G_{D}>0$ at x_{0}. It follows from Hopf's lemma that $\frac{\partial\left(G_{R, \lambda}-G_{D}\right)\left(x_{0}\right)}{\partial n}>0$. Notice that $\frac{\partial G_{D}(x, y)}{\partial n}$ for $x \in \Omega, y \in \partial \Omega$ is a smooth function of $y \in \partial \Omega$. So we have $\left\|G_{R, \lambda}-G_{D}\right\|_{C(\bar{\Omega})} \leq \lambda \max _{x \in \partial \Omega}\left|\frac{\partial G_{D}(x)}{\partial n}\right| \rightarrow 0$ as $\lambda \rightarrow 0^{+}$. Let $G=G_{R, \lambda}-G_{D}$. Then $\|G\|_{C(\bar{\Omega})}=O(\lambda)$. By the elliptic regularity of the Robin problem (see sec.6.7 in [3]), $\|G\|_{C^{2, \alpha}(\bar{\Omega})}=O(\lambda), \alpha \in$ $(0,1)$. In particular, by the trace mapping theorem (see sec. 8 in [7]), we have $\left\|G_{R, \lambda}-G_{D}\right\|_{W^{1, p}(\partial \Omega)}=O(\lambda)$ as $\lambda \rightarrow 0^{+}$.

We define the class $G \subset C\left(\bar{\Omega} \times \mathbf{R}^{+}\right)$as follows: Let $\varphi=\varphi(x, \xi) \in$ $C(\bar{\Omega} \times \mathbf{R})$ and φ be C^{1}-function in ξ. We say that $\varphi \in G$ if and only if $\varphi(x, \xi) \geq \varphi_{0}(x) \geq 0$ for $x \in \Omega, \xi \in \mathbf{R}^{+}$and $\frac{1}{\varphi_{0}} \in L^{m}(\Omega)$ where $m>n$, and φ is nondecreasing and concave down in $\xi \in \mathbf{R}^{+}$.

Here is the lemma which plays a primary role in this paper.
Lemma 2. Let $P>0$ be a constant and assume $\varphi \in G$. Also let $0 \not \equiv h \geq 0, h \in C(\bar{\Omega})$. Consider

$$
\left\{\begin{array}{l}
-\varphi(x, u) \Delta u+P u=h \tag{1}\\
\frac{\partial u}{\partial n}+\beta(u)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\beta \in C^{2}, \beta(0)=0, \beta$ is strictly increasing.
Then (1) has a unique positive solution $u \in W^{2, m}(\Omega) \bigcap C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. Moreover, the solution operator S such that $u=S h$ is compact in K or $C(\bar{\Omega})$, where K is the positive cone of $C(\bar{\Omega})$.

Proof. The positiveness of solutions to (1) for $h \geq 0$ follows from the generalized maximum principle. (See page 209 in [3].)

We claim that the nonnegative solution to (1) when $0 \leq h \in C(\bar{\Omega})$ is unique. Let u and v be two nonnegative solutions of (1) such that $u \not \equiv$ v. Without loss of generality, let $\min _{x \in \bar{\Omega}}(u(x)-v(x))<0$. (The other case is similar.) Assume $u\left(x_{0}\right)-v\left(x_{0}\right)=\min _{x \in \bar{\Omega}}(u(x)-v(x))<0$. One can show that $x_{0} \notin \partial \Omega$. In fact, if $x_{0} \in \partial \Omega$, then by the maximality at $x_{0}, \frac{\partial(u-v)\left(x_{0}\right)}{\partial n} \leq 0$. Also $\beta\left(u\left(x_{0}\right)\right)-\beta\left(v\left(x_{0}\right)\right)<0$ because β is strictly increasing. Thus the boundary condition becomes $\left[\frac{\partial u\left(x_{0}\right)}{\partial n}-\right.$ $\left.\frac{\partial v\left(x_{0}\right)}{\partial n}\right]+\beta\left(u\left(x_{0}\right)\right)-\beta\left(v\left(x_{0}\right)\right)<0$, which is a contradiction. So $x_{0} \notin \partial \Omega$. Therefore $u\left(x_{0}\right)>0$ and $v\left(x_{0}\right)>0$. Since u and v are solutions of (1), we have in a neighbourhood $N\left(x_{0}\right)$ of x_{0},

$$
\begin{equation*}
\stackrel{-\Delta(u-v)}{\text { a.e. }} \frac{1}{\varphi(x, u) \varphi(x, v)}[h(x)(\varphi(x, v)-\varphi(x, u))-P(u \varphi(x, v)-v \varphi(x, u))] . \tag{2}
\end{equation*}
$$

Observe that $\int_{\partial N\left(x_{0}\right)} \frac{\partial(u-v)}{\partial n} \geq 0$. Thus $-\int_{N\left(x_{0}\right)} \Delta(u-v) \leq 0$. On the other hand, since φ is nondecreasing and concave down, we have $u\left(x_{0}\right) \varphi\left(x_{0}, v\left(x_{0}\right)\right)-v\left(x_{0}\right) \varphi\left(x_{0}, u\left(x_{0}\right)\right)<0$. Then the integral of the right side of (2) over $N\left(x_{0}\right)$ is positive, which gives a contradiction. This shows the uniqueness of solution.

Next, to show the existence of a solution, we consider the Yosida approximation on β of equations (1):

$$
\left\{\begin{array}{l}
-\varphi(x, u) \Delta u+P u=h \tag{3}\\
u+\lambda \frac{\partial u}{\partial n}=(I+\lambda \beta)^{-1} u \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\lambda>0$. First we show a priori bound in a space $C^{1, \alpha}(\bar{\Omega})$ of every solution to (3), where $\alpha \in(0,1)$. We then look for a fixed point of the
equation
(4) $\left\{\begin{array}{l}-\Delta u=\frac{h-P v}{\varphi(x, v)} \\ u+\lambda \frac{\partial u}{\partial n}=(I+\lambda \beta)^{-1} v \quad \text { on } \partial \Omega .\end{array}\right.$

Let u be a solution of equation (3) for $x \in \Omega$, i.e., u is a fixed point of equation (4). Let $G_{R, \lambda}$ be the Green's function such that

$$
\left\{\begin{array}{l}
-\Delta G=\delta \\
G+\lambda \frac{\partial G}{\partial n}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Then we have

$$
\begin{align*}
u(x)= & \int_{\Omega} G_{R, \lambda}(x, y)\left(\frac{h-P u(y)}{\varphi(y, u(y))}\right) d y \\
& +\int_{\partial \Omega} \frac{\partial}{\partial n}\left(G_{R, \lambda}(x, y)\right)(I+\lambda \beta)^{-1} u(y) d y \tag{5}
\end{align*}
$$

Note that $\|P u\|_{\infty} \leq\|h\|_{\infty}$ by a C^{1}-version general maximum principle. Now we estimate:
(6)

$$
\begin{align*}
\int_{\Omega}\left|G_{R, \lambda} \frac{h-P u}{\varphi}\right| & \leq\left\|G_{R, \lambda}\right\|_{L^{n / n-1}}\left\|\frac{h-P u}{\varphi_{0}}\right\|_{L^{n}} \\
& <K_{1} 2\|h\|_{\infty}\left\|\frac{1}{\varphi_{0}}\right\|_{L^{n}}=K_{2}\|h\|_{\infty} \\
\int_{\Omega}\left|\frac{\partial G_{R, \lambda}}{\partial x_{i}} \frac{h-P u}{\varphi}\right| & \leq N \int_{\Omega} \frac{1}{r^{n-1}}\left|\frac{h-P u}{\varphi_{0}}\right| \leq N\left\|\frac{h-P u}{\varphi_{0}}\right\|_{L^{m}} \int_{\Omega} \frac{1}{r^{\frac{(n-1) m}{m-1}}} \\
& <2\|h\|_{\infty}\left\|\frac{1}{\varphi_{0}}\right\|_{L^{m}} \tilde{N}<K\|h\|_{\infty} \tag{7}
\end{align*}
$$

since $\frac{1}{\varphi_{0}} \in L^{m}(\Omega)$ where $m>n$ (therefore $\left.\frac{(n-1) m}{m-1}<n\right),\|P u\|_{\infty} \leq$ $\|h\|_{\infty}, \tilde{N}=\int \frac{1}{\frac{(n-1) m}{m-1}}$ and $r=\|x-y\|$. Here N is a constant independent of λ if λ is small by Lemma 1 (ii). Note that the second inequality follows from Hölder's inequality.

Next we notice that since $(I+\lambda \beta)^{-1}$ is increasing,

$$
\begin{align*}
\left|(I+\lambda \beta)^{-1} u\right| & \leq \max \left\{\left|(I+\lambda \beta)^{-1}\left(-\|u\|_{\infty}\right)\right|,(I+\lambda \beta)^{-1}\left(\|u\|_{\infty}\right)\right\} \\
& =\left|(I+\lambda \beta)^{-1}\left(\|u\|_{\infty}\right)\right| \leq K_{3}\|u\|_{\infty} \leq K_{4}\|h\|_{\infty} \tag{8}
\end{align*}
$$

by the assumption of monotonicity of the function $\beta \in C^{2}$ and $\beta(0)=$ 0 .

Since $G_{R, \lambda}(x, y)$ is a smooth function for $x \in \Omega, y \in \partial \Omega$, we have

$$
\begin{align*}
& \int_{\partial \Omega}\left|\frac{\partial\left(D_{x_{i}} G_{R, \lambda}\right)}{\partial n}(I+\lambda \beta)^{-1} u(y)\right| d y \leq C\|h\|_{\infty} \int_{\partial \Omega}\left(\left|\frac{\partial\left(D_{x_{i}} G_{D}\right)}{\partial n}\right|+1\right) \\
& (9) \tag{9}\\
& \leq C_{1}\|h\|_{\infty}
\end{align*}
$$

by Lemma 1 (ii) if λ is small. Thus (6), (7) and (9) imply that

$$
\begin{equation*}
\left\|D_{x_{i}} u\right\|_{\infty} \leq\left(K\|h\|_{\infty}+C_{1}\|h\|_{\infty}\right)=M\|h\|_{\infty} \tag{10}
\end{equation*}
$$

where M is independent of λ since $\left\|G_{R, \lambda}-G_{D}\right\|_{C^{2, \alpha}} \rightarrow 0$ as $\lambda \rightarrow 0^{+}$, $0 \leq \lambda<1$ by Lemma 1 (ii). Therefore, applying the elliptic regularity (see, for example, [1] and Theorem 13.1 (d) [7]) to (4) together with the fact that $\|\nabla u\|_{\infty} \leq M\|h\|_{\infty}$, we have $u \in W^{2, m}(\Omega)$ and

$$
\begin{equation*}
\|u\|_{W^{2, m}} \leq C\left(\left\|\frac{h-P u}{\varphi_{0}}\right\|_{L^{m}}+\left\|(I+\lambda \beta)^{-1} u\right\|_{W^{1 / 2, m}(\partial \Omega)}+\|u\|_{W^{1, m}}\right) \tag{11}
\end{equation*}
$$

Therefore by (8) and (10)

$$
\begin{equation*}
\|u\|_{W^{2, m}} \leq C_{0}\|h\|_{\infty} \tag{12}
\end{equation*}
$$

for some generic constant C_{0}. Since $m>n$, the Sobolev imbedding theorem implies

$$
\begin{equation*}
\|u\|_{C^{1, \alpha}(\bar{\Omega})} \leq M_{1}\|h\|_{\infty} \tag{13}
\end{equation*}
$$

where some $\alpha \in(0,1)$. By the arguments used above, M_{1} is a constant independent of P and λ.

Let $v \in C^{1, \alpha}(\bar{\Omega})$ and define $T: C^{1, \alpha}(\bar{\Omega}) \rightarrow C^{1, \alpha}(\bar{\Omega})$ as follows. Let $u=T v$ be a solution of (4). We want to show that T has a fixed point for some $u \in C^{1, \alpha}(\bar{\Omega})$. To do this, we apply the following fixed-point theorem (see page 280 Theorem 11.3 in [3]): let T be a compact mapping of a Banach space E into itself, and suppose that there exists a constant K such that $\|u\|_{E}<K$ for all $u \in E$ and $\theta \in[0,1]$ satisfying $u=\theta T u$. Then T has a fixed point.

One can show that T is a compact operator by replacing u by v in estimates (6), (7) and (9). Consider equation $v=\theta T v$ for $\theta \in[0,1]$. Replacing T by θT to get an estimate corresponding to (13), it is not hard to show that $\|u\|_{C^{1, \alpha}(\bar{\Omega})} \leq \theta M_{1}\|h\|_{\infty} \leq M_{2}\|h\|_{\infty}$. So there exists a constant $K>0$ such that $\|u\|_{C^{1, \alpha}(\bar{\Omega})}<K$. Thus by the above fixed-point theorem, $T u=u$ for some $u \in C^{1, \alpha}(\bar{\Omega})$. We denote it by u_{λ}. Note that (3) is equivalent to

$$
\left\{\begin{array}{l}
-\varphi(x, u) \Delta u+P u=h \\
-\frac{\partial u}{\partial n}=\beta(I+\lambda \beta)^{-1} u \quad \text { on } \partial \Omega
\end{array}\right.
$$

and u_{λ} is unique. (See the proof of uniqueness above.) $\operatorname{By}(12),\left\|u_{\lambda}\right\|_{W^{2, m}(\Omega)}$ is uniformly bounded in λ where λ is small. Thus there exists a subsequence of $\left\{u_{\lambda}\right\}$, denoted by $\left\{u_{\lambda}\right\}$ again, such that $u_{\lambda} \xrightarrow{w} u$ in $W^{2, m}(\Omega)$. Also by (13), we have a subsequence of $\left\{u_{\lambda}\right\}$ such that $u_{\lambda} \rightarrow u$ in $C^{1, \tilde{\alpha}}(\bar{\Omega})$ for some $\tilde{\alpha} \in(0, \alpha)$. Thus we have, for $v \in$
$W^{-2, m^{\prime}}(\Omega)$ where $m^{\prime}=\frac{m}{m-1},\left\langle-\Delta u_{\lambda}, v\right\rangle \rightarrow\langle-\Delta u, v\rangle$ and $\left\langle\frac{h-P u_{\lambda}}{\varphi\left(x, u_{\lambda}\right)}, v\right\rangle$ $\rightarrow\left\langle\frac{h-P u}{\varphi(x, u)}, v\right\rangle$ since $\varphi\left(x, u_{\lambda}\right) \rightarrow \varphi(x, u)$ in $C(\bar{\Omega})$. So $\langle\Delta u, v\rangle$ $=\left\langle\frac{h-P u}{\varphi(x, u)}, v\right\rangle$. Therefore $-\Delta u=\frac{h-P u}{\varphi(x, u)}$, and so u is a solution in $W^{2, m}(\Omega) \bigcap C^{1, \tilde{\alpha}}(\bar{\Omega})$ for some $\tilde{\alpha}$ such that $0<\tilde{\alpha}<\alpha$.

The compactness of the solution operator S in $C(\bar{\Omega})$ such that $u=S h$ follows from (12) and (13) for $u_{\lambda} \rightarrow u$ by the Ascoli-Arzéla theorem.

REMARK. One can say that $u \in W^{2, m}(\Omega)$ is a solution to (1) if

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} \frac{P u-h}{\varphi(x, u)} \cdot v d x
$$

for all $v \in C_{0}^{\infty}(\Omega)$.
Let $F(x, \xi) \in C^{1}(\bar{\Omega} \times \mathbf{R})$ such that $F(x, 0)=0$ and $\left|F_{\xi}(x, \xi)\right| \leq M$ for $(x, \xi) \in \Omega \times \mathbf{R}$, where $M>0$ is some constant. Consider the nonlinear elliptic problem

$$
\left\{\begin{align*}
-\varphi(x, u) \Delta u & =F(x, u) \tag{14}\\
\frac{\partial u}{\partial n}+\beta(u) & =0 \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where $\varphi \in G$ and β is strictly increasing, $\beta(0)=0$.
We define upper and lower solutions for degenerate nonlinear elliptic equations.

Let $\varphi \geq \varphi_{0} \geq 0, \frac{1}{\varphi_{0}} \in L^{m}(\Omega)$ where $m>n$. Let $u \in W^{2, m}(\Omega)$ $\bigcap C^{1}(\bar{\Omega})$.
(i) u is called an upper solution of (14) if u satisfies

$$
\left\{\begin{aligned}
-\varphi(x, u) \Delta u & \geq F(x, u) \quad \text { a.e. in } \Omega \\
\frac{\partial u}{\partial n}+\beta(u) & \geq 0 \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

(ii) u is a lower solution of (14) if u satisfies

$$
\left\{\begin{aligned}
-\varphi(x, u) \Delta u & \leq F(x, u) \quad \text { a.e. in } \Omega \\
\frac{\partial u}{\partial n}+\beta(u) & \leq 0 \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

Now we shall extend the results of the method of upper-lower solution to the case of a degenerate elliptic equation.

ThEOREM. Suppose u_{0} and v_{0} are upper and lower solutions, respectively, of (14) with $u_{0} \geq v_{0}$ on $\bar{\Omega}$. Then there exists a maximal solution u of (14) such that $v_{0} \leq u \leq u_{0}$.

Proof. We choose a constant P such that $P>\sup _{\bar{\Omega} \times[a, b]}\left|D_{2} F(x, u)\right|$ where a and b are the minimum of v_{0} and maximum of u_{0}, respectively, and D_{2} denotes the derivative with respect to the second component. Define a mapping T by $u=T v$, where u is the unique solution of

$$
\left\{\begin{array}{l}
-\varphi(x, u) \Delta u+P u=F(x, v)+P v: \equiv h \tag{15}\\
\frac{\partial u}{\partial n}+\beta(u)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $v \in \mathbf{K}=C^{+}(\bar{\Omega})$. For the existence of a unique solution u, see Lemma 2. Note $h \geq 0$ by choice of P.

Next we claim that T is monotone. We need to show that if u_{i}, where $i=1,2$, are solutions to

$$
\left\{\begin{array}{l}
-\varphi\left(x, u_{i}\right) \Delta u_{i}+P u_{i}=F\left(x, v_{i}\right)+P v_{i}: \equiv h_{i} \tag{16}\\
\frac{\partial u_{i}}{\partial n}+\beta\left(u_{i}\right)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

with $v_{1} \geq v_{2} \not \equiv v_{1}$, then $u_{1}>u_{2}$. Notice that if $v_{1} \geq v_{2} \not \equiv v_{1}$, then $h_{1} \geq h_{2} \geq 0$ and $h_{1} \not \equiv h_{2}$. Assume $u_{1}(x) \leq u_{2}(x)$ for at least one x. Let $\min _{x \in \bar{\Omega}}\left(u_{1}(x)-u_{2}(x)\right)=u_{1}\left(x_{0}\right)-u_{2}\left(x_{0}\right)<0$. Then as in the proof
of uniqueness of the solution in Lemma 2, we can show that $x_{0} \notin \partial \Omega$. Also we can use the same argument as in the proof of the uniqueness in Lemma 2. Take the integral $\int_{N\left(x_{0}\right)}$ on both sides of the equation $-\Delta\left(u_{1}-u_{2}\right) \stackrel{\text { a.e. }}{=} \frac{1}{\varphi\left(x, u_{1}\right) \varphi\left(x, u_{2}\right)}\left[h_{1} \varphi\left(x, u_{2}\right)-h_{2} \varphi\left(x, u_{1}\right)-P\left(u_{1} \varphi\left(x, u_{2}\right)-\right.\right.$ $\left.\left.u_{2} \varphi\left(x, u_{1}\right)\right)\right]$. Then the integral of the left side is nonpositive while the left side is positive. This contradiction shows $u_{1}>u_{2}$.

Let u_{0} be an upper solution of (14) and let $u=T u_{0}$. Then we have

$$
\begin{equation*}
-\Delta\left(u-u_{0}\right)+\frac{P}{\varphi(x, u)}\left(u-u_{0}\right) \stackrel{\text { a.e. }}{=} \frac{F\left(x, u_{0}\right)}{\varphi(x, u)}+\Delta u_{0} \leq 0 . \tag{17}
\end{equation*}
$$

Suppose $u(x)>u_{0}(x)$ for at least one $x \in \bar{\Omega}$.
Let $\left(u-u_{0}\right)\left(x_{0}\right)=\max _{x \in \bar{\Omega}}\left(u-u_{0}\right)(x)>0$. Then $x_{0} \notin \partial \Omega$ and since in the neighbourhood $N\left(x_{0}\right)$ of $x_{0}, \int_{\partial N\left(x_{0}\right)} \frac{\partial\left(u-u_{0}\right)}{\partial n} \leq 0$, we have $-\int_{\left(x_{0}\right)} \Delta\left(u-u_{0}\right) \geq 0$. So the integral of the left side over $N\left(x_{0}\right)$ in (17) is positive, while the left side is nonpositive, a contradiction. Thus $T u_{0} \leq u_{0}$.

Similarly, one can see that $T v_{0} \geq v_{0}$ if v_{0} is a lower solution of (14). By the monotonicity of T 0and the inequalities $v_{0} \leq T v_{0}$ and $T u_{0} \leq u_{0}$, we have $T v \in\left[\left[v_{0}, u_{0}\right]\right]$ for $v \in\left[\left[v_{0}, u_{0}\right]\right]$. Now recall that the nonlinear operator $(-\varphi(x, \cdot) \Delta+P)^{-1}$ under the nonlinear boundary condition is compact in $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. (See Lemma 2.) Also note that the order interval $\left[\left[v_{0}, u_{0}\right]\right]$ is a closed, bounded convex subset of $C(\bar{\Omega})$. Now apply the Schauder fixed-point theorem to get a fixed point \tilde{u} of T. Therefore \tilde{u} is a solution of (14).

References

1. S. Agmon, A. Douglis, L. Nirenberg, Estimate near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12 (1959)), 623-727.
2. H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Ind. U. Math. J. 21 (1971), 125-146 .
3. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, 1983 .
4. C.Y. Lin , Degenerate nonlinear parabolic boundary value problems, Nonlinear Analy. Theory, Methods \& Appl. 13(11) (1989), 1303-1315 .
5. A.G. Ramm and L. Li , Estimates for Green's functions, Proc. Amer. Math. Soc. 103(3) (1988), 875-881.
6. D. Sattinger, Monotone methods in nonlinear elliptic and parabolic equations, Ind. U. Math. J. 21 (1972), 979-1000 .
7. J. Wloka, Partial differential equations, Cambridge University Press, 1987

Department of Mathematics
Korea University
Jochiwon 339-800, Korea

