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Upper-Lower Solutions for Singular Elliptic

Equations under Nonlinear Boundary Conditions

IN KYUNG AHN

1. Introduction

Our interest is to study the upper-lower solution method for de-
generate elliptic equations under the nonlinear Robin-type boundary
condition. The method of upper-lower solutions is well known for uni-
formly elliptic operators under the usual boundary condition. (See [6],
1))

In this paper, we will prove the upper-lower solution method for
singular elliptic equations under the nonlinear boundary conditions.
The technique employs Schauder’s fixed point theorem, which is a

new justification of the upper-lower solution method.

2. Results

Throughout this paper, let K = C(Q)* be the positive cone of
the ordered Banach space C({2) where Q is a bounded region in R”
and denote the-ordered interval [[u;,uz]] :== {u € C(Q) : u; < u <
ug for up, ug € C(Q)}.

Let G be Green’s function: —AG = §(z,y). We denote Green’s
functions under the Dirichlet and the Robin condition - + /\% =0,

A > 0, by Gp and Gpg,», respectively. Then we have the following

lemma.
LEMMA 1.
. G
(i) 282 < 0 and 522 < 0
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(i) |Gr,x — Gbllc2.a@) = O(A), [|GrA — GDllwrr(aq) = O(), for
an arbitrary p > 0, a € (0,1), as A — 0F.

PROOF. (i) See [5].
(ii) First note —A(GR,,\ - GD) =6—6=0 inQand (GR,,\ - GD) +
ANAErAZGR)) = G\ + AZGRA 222 = )b > ( on HD by (i).
Let zo € Q be such that (Gr,x — Gp)(z¢) = maxg(Gr,x — Gp). The
strong maximum principle implies that zo € 0§ and therefore Gr x —
Gp > 0 at zg. It follows from Hopf’s lemma that a(GR'*ng )z g,
Notice that W for z € §2, y € 0N is a smooth function of y € ON.
So we have ||Gr,x» — Gpllcq) < Amax;ean |ﬁb"n£)-| — 0as A — 0.
Let G = GR,» —Gp. Then ||G||¢q) = O(A). By the elliptic regularity
of the Robin problem (see sec.6.7 in [3]), ||Gllcz.a(a) = O(}), a €
(0,1). In particular, by the trace mapping theorem (see sec.8 in [7]),
we have ||Gr,x — Gp|lwrran) = O(X) as A — 0F.

We define the class G C C(Q x R*) as follows: Let ¢ = ¢(z,£) €
C(£2 x R) and ¢ be C'-function in £. We say that ¢ € G if and only
if p(z,€) > po(z) > 0forz € Q, £ € RY and # € L™(§Q) where

m > n, and ¢ is nondecreasing and concave down in £ € R¥.

Here is the lemma which plays a primary role in this paper.

LEMMA 2. Let P > 0 be a constant and assume ¢ € G. Also let
0#h >0, heC(Q). Consider

(1) Ou

— +B(u)=0 on 0

{ —¢(z,u)Au+ Pu=h
on

where 3 € C?, 3(0) = 0, B is strictly increasing.
Then (1) has a unique positive solution u € W%™(Q) (N C1*() for
some a € (0,1). Moreover, the solution operator S such that u = Sh

is compact in K or C(Q), where K is the positive cone of C({).
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PROOF. The positiveness of solutions to (1) for A > 0 follows from
the generalized maximum principle. (See page 209 in [3].)

We claim that the nonnegative solution to (1) when 0 < h € C(Q) is
unique. Let u and v be two nonnegative solutions of (1) such that u #
v. Without loss of generality, let min ¢ (u(z)—v(z)) < 0. (The other
case is similar.) Assume u(z¢)—v(zo) = min,cq(u(z)—v(z)) < 0. One
can show that zo ¢ 9. In fact, if zo € 012, then by the maximality
at zo, 9(—'55':—1)—(3—01 < 0. Also B(u(zo)) — B(v(zo)) < 0 because S is
strictly increasing. Thus the boundary condition becomes [ﬁ‘g(a’ﬂ —
%ZL)]-}-B(U(IEQ))—,B(U(&'())) < 0, which is a contradiction. So o & 0S2.
Therefore u(z¢) > 0 and v(z¢) > 0. Since u and v are solutions of (1),

we have in a neighbourhood N(z) of z,

@

— A(u —v)
i 1
En @)

a.

o

[a()(p(2,v) — p(z,u)) — Pup(z,v) — vo(z,u))].

Observe that [5y(, ) W > 0. Thus — [y, s A(u —v) < 0. On
the other hand, since ¢ is nondecreasing and concave down, we have
u(zo)@(zo,v(z0)) — v(zo)p(zo,u(zo)) < 0. Then the integral of the
right side of (2) over N(z¢) is positive, which gives a contradiction.
This shows the uniqueness of solution.

Next, to show the existence of a solution, we consider the Yosida

approximation on § of equations (1):

3
®) u+ A@ =T +XM)"'u  ondQ

{ —o(z,u)Au+Pu=nh
on

where A > 0. First we show a priori bound in a space C1%() of every
solution to (3), where a € (0,1). We then look for a fixed point of the
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equation
Au= h — Pv

(4) ¢(z,v)
u+/\g%=(1+)\,3)"lv on Of.

Let u be a solution of equation (3) for z € Q, i.e., u is a fixed point
of equation (4). Let Gg,x be the Green’s function such that

-AG=46
G+/\6—G=0 on ON.
on

Then we have

u2) = [ Graten) (Lot )y

e(y,u(y))
) + [ e (Gra@u) T+ A9 i)y

Note that ||Pul|co < ||h]lco by a C'-version general maximum princi-

ple. Now we estimate:

(6)

h—- P h — Pu
/ G2 snGR,AnLn,,,_II
Q Ln
1
< K:2l|Aleo ‘— = Kallflor
‘PO Ln
/ OGr\ h— Pu <N 1l’h—PuSN”h—Pu / ,,_11,,,
Q 3:1:,' @ Q rn- Yo ®o LmJQ p m=-1
(7) | < 2||h||oo ool N < K||h||oo
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since —1— € L™(Q) where m > n (therefore % < n), ||Pullo £
||h||oo, N f’EI and r = ||z — y||. Here N is a constant in-
dependent of A i is small by Lemma 1 (ii). Note that the second

inequality follows from Holder’s inequality.

Next we notice that since (I + A3)~! is increasing,

(I +28) " u| <max{|(T + AB) ™" (=llulleo)l, (1 + AB) " (llulo)}
(8) =|(I + A8) " (Ilulloo)| < Kslulloo < Ksl|Alloo

by the assumption of monotonicity of the function 8 € C? and 5(0) =
0.
Since GR,a(z,y) is a smooth function for z € 2, y € 0Q, we have
I(Ds; 9(D.;Gp)

[ [ A2 4 ap) u(y)ldy < Clible | Q(] 200)\,1)
® <Gl

by Lemma 1 (ii) if A is small. Thus (6), (7) and (9) imply that
(10) 1 Dz;ttfloo < (K[[hlloo + Cillhlleo) = M][Rloo

where M is independent of A since ||Gr,x — Gp|lc2.« — 0as A — 07,
0 < XA < 1by Lemma 1 (ii). Therefore, applying the elliptic regularity
(see, for example, [1] and Theorem 13.1 (d) [7]) to (4) together with
the fact that |Vu||leo < M||h||co, we have u € W2™(Q) and

(11)

lellwem < c(”h Pu

HIT +28) ullwrnm oy + nu”Wl,m).
L™

Therefore by (8) and (10)

(12) [ellwzm < Collhlloo
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for some generic constant Cy. Since m > n, the Sobolev imbedding

theorem implies

(13) [ellcra@) < Mil|hleo

where some a € (0,1). By the arguments used above, M, is a constant
independent of P and A.

Let v € CY*(Q) and define T : C1*(Q) — CY*(Q) as follows.
Let u = Tv be a solution of (4). We want to show that T has a
fixed point for some u € C1*(Q2). To do this, we apply the following
fixed-point theorem (see page 280 Theorem 11.3 in [3]): let T be a
compact mapping of a Banach space F into itself, and suppose that
there exists a constant K such that ||u||g < K for all v € E and
6 € [0, 1] satisfying u = §T'u. Then T has a fixed point.

One can show that T is a compact operator by replacing u by v in
estimates (6), (7) and (9). Consider equation v = §Tv for 6 € [0, 1].
Replacing T by 6T to get an estimate corresponding to (13), it is
not hard to show that ||ul|c1.a(g) < 0Mi||hllec < Mallh||lco. So there
exists a constant K > 0 such that ||ul|c1,«(g) < K. Thus by the above
fixed-point theorem, Tu = u for some u € C1H*(§2). We denote it by
ux. Note that (3) is equivalent to

—¢(z,u)Au+ Pu=nh
Ou ~1
— 5 = B(I+AB)" u on 01,

and u is unique. (See the proof of uniqueness above.) By (12), ||ux|lw2m (q)
is uniformly bounded in A where A is small. Thus there exists a
subsequence of {uy}, denoted by {ur} again, such that uy — u in
W?2m(Q). Also by (13), we have a subsequence of {u)} such that

uy — u in CH%(Q) for some & € (0,a). Thus we have, for v €
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W-2m'(Q) where m' = -~ (—Aux,v) — (—Au,v) and { (zux),v>

(3(::),1:) since p(z,ux) — ¢(z,u) in C(). So (Au,v)

= <£f;i—“,v>. Thierefore —Au = —zf;%, and so u is a solution in
W2m(Q)( C1*(Q) for some & such that 0 < & < a.

The compactness of the solution operator S in C(Q) such that

u = Sh follows from (12) and (13) for ux — u by the Ascoli-Arzéla

theorem.

REMARK. One can say that u € W2™(Q) is a solution to (1) if

/Vu-Vvdm:/Pu_h-vdx
Q Q ‘P(‘T’u)
for all v € C§°(Q2).

Let F(z,¢) € CY(f2 x R) such that F(z,0) = 0 and |F¢(z,£)| < M
for (z,£) € 2 x R, where M > 0 is some constant. Consider the

nonlinear elliptic problem

{ —p(z,u)Au = F(z,u)
(14)

Ou
n +pB(u)y=0  on 00N

where ¢ € G and f is strictly increasing, #(0) = 0.

We define upper and lower solutions for dégenerate nonlinear ellip-

tic equations.

Let ¢ > o > 0, = € L™(Q) where m > n. Let u € W>™(Q)
NCYQ).

(i) u is called an upper solution of (14) if u satisfies

Ou

—p(z,u)Au > F(z,u) a.e. in Q
I +B(u) >0  on 0N
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(ii) u is a lower solution of (14) if u satisfies

—p(z,u)Au < F(z,u) a.e. in §)
Ou

n +B(u) <0 on 00

Now we shall extend the results of the method of upper-lower solution

to the case of a degenerate elliptic equation.

THEOREM. Suppose ug and vy are upper and lower solutions, re-
spectively, of (14) with ug > vy on . Then there exists a maximal
solution u of (14) such that vo < u < uy.

PROOF. We choose a constant P such that P > supqy(a,4) | D2 F(z, u)|
where a and b are the minimum of vy and maximum of ug, respectively,
and D denotes the derivative with respect to the second component.

Define a mapping T by u = T'v, where u is the unique solution of

—¢(z,u)Au+ Pu= F(z,v)+ Pv:=h
(15) Ou
n +B(u)=0 on 01,
where v € K = C1(). For the existence of a unique solution u, see
Lemma 2. Note h > 0 by choice of P.
Next we claim that T is monotone. We need to show that if u;,

where ¢ = 1,2, are solutions to

— o(z,u;)Au; + Pu; = F(z,v;) + Pv; := h;
(16) 311,,’
on

+B(u)=0  ondQ,

with v; > vy # vy, then u; > uy. Notice that if v; > vy # vy, then
hi1 > he > 0 and hy # ho. Assume u;(z) < uz(z) for at least one z.
Let min, g (u1(z)—u2(2)) = u1(20)—u2(z0) < 0. Then as in the proof
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of uniqueness of the solution in Lemma 2, we can show that zo & 0S).
Also we can use the same argument as in the proof of the uniqueness
in Lemma 2. Take the integral [ N(zg) O1 both sides of the equation
—A(u;—ug) = m[hlw(:ﬂ, uz)—hop(z,u1)—Purp(z,uz)—
u2¢(z,u1))]. Then the integral of the left side is nonpositive while the
left side is positive. This contradiction shows u; > us.

Let up be an upper solution of (14) and let u = T'uy. Then we have

(17) —A(u —ug) + ;@P,T)(u —ug) = %%07) + Aug < 0.
Suppose u(z) > ug(z) for at least one z € .

Let (v — uo)(wo) = max,cq(u — uo)(z) > 0. Then zo ¢ 00 and
a("a;“) <0, we have
- f(zo) A(u — ug) > 0. So the integral of the left side over N(zg) in
(17) is positive, while the left side is nonpositive, a contradiction.
Thus Tug < ug.

Similarly, one can see that Tvy > v if vy is a lower solution of

since in the neighbourhood N(zg) of zo, faN(%)

(14). By the monotonicity of T Oand the inequalities vg < Ty and
Tug < ug, we have Tv € [[vg, uo]] for v € [[vo, uo]]. Now recall that the
nonlinear operator (—p(z,+)A + P)~! under the nonlinear boundary
condition is compact in C1**(Q) for some a € (0,1). (See Lemma 2.)
Also note that the order interval [[vg, ug]] is a closed, bounded convex
subset of C({2). Now apply the Schauder fixed-point theorem to get a
fixed point @ of T. Therefore @ is a solution of (14).
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