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Upper-Lower Solutions for Singular Elliptic 

Equations under Nonlinear Boundary Conditions

In kyung Ahn

1. Introduction
Our interest is to study the upper-lower solution method for de

generate elliptic equations under the nonlinear Robin-type boundary 

condition. The method of upper-lower solutions is well known for uni

formly elliptic operators under the usual boundary condition. (See [6], 

[2].)

In this paper, we will prove the upper-lower solution method for 

singular elliptic equations under the nonlinear boundary conditions. 

The technique employs Schauder’s fixed point theorem, which is a 

new justification of the upper-lower solution method.

2. Results
Throughout this paper, let K = C(Q)+ be the positive cone of 

the ordered Banach space C(Q) where Q is a bounded region in Rn 
and denote the ordered interval [[以1,1시] ：= {u G C(Q) : Ui < u < 

U2 for ui, U2 € C(i>)}.

Let G be Green’s function: —AG = 义⑦,?/). We denote Green’s 

functions under the Dirichlet and the Robin condition • + A監 = 0, 

A > 0, by Gd and Gr,x, respectively. Then we have the following 

lemma.

Lemma 1.

⑴ * < 0 and 으읗쓰스 < 0
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(ii)||GR,A —G에C2,a@ =0(A), ||Gr,a —GD|hvi，P(ao)=O(A),for 

an arbitrary p > 0, a G (0,1), as A —> 0十 .

Proof, (i) See [5].

(ii) First note — A((7；근,入 一 Go) = 6 — 6 = 0 in fl and (Gk,a —(우d) + 

入(헤으으스^) = Gr> + A으옿쓰스 一 A% = -X% > 0 on g by (i). 

Let xq E Q be such that ((우호,a —(우£))(鉛0)= max立((9凡,入 — Gd)- The 

strong maximum principle implies that xq € d£l and therefore Gr,x — 
Gd > 0 at xq. It follows from Hopf’s lemma that a(은으세너)= > 0. 

Notice that 9으gf’싀)for x € J2, j/G 石아 is a smooth function of y G 에. 

So we have ||C구k,a — Gd||c(⑵ < AmaxxGaQ |•흐普시 —+ 0 as A — 0+. 

Let G = Gr,x — Gd. Then ||에c(0) = 사(시- By the elliptic regularity 

of the Robin problem (see sec.6.7 in [3]), ||에c2>a(i>) = 0(A), a E 

(0,1). In particular, by the trace mapping theorem (see sec.8 in [7]), 

we have ||C구요,入 一(구이|vvM>(aQ) = O(A) as A —> 0十.

We define the class G C (7(0 x R+) as follows: Let(/> =G 

C(Q x R) and (月 be C1-function in f. We say that (月 G (7 if and only 

if (外(⑦,。) > 9?o(^) > 0 for a: € f>, f € R+ and 志 G £m(Q) where 

m > n, and <p is nondecreasing and concave down in f G R十.

Here is the lemma which plays a primary role in this paper.

LEMMA 2. Let P > 0 be a constant and assume (竹 € (7. Also let 

Q h > 0, h E C(j>). Consider

— (月 (a〉, u)Au + Pu = h

QtI
~—F /3(u) = 0 on d?l
dn

where (3 G C2, 0(0) = 0, 0 is strictly increasing.

Then (1) has a unique positive solution u 6 VK2’m(Q) Q C1,a(Q) for 

some ot E (0,1). Moreover, the solution operator S such that u = Sh 

is compact in K or where K is the positive cone of C(Q).

(1)
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PROOF. The positiveness of solutions to (1) for h>0 follows from 

the generalized maximum principle. (See page 209 in [3].)

We claim that the nonnegative solution to (1) when 0 < /i € C(Q) is 

unique. Let u and v be two nonnegative solutions of (1) such that u 羊 

v. Without loss of generality, let minx€Q(u(a;) — v(x)) < 0. (The other 

case is similar.) Assume 以(⑦o) —沙(⑦o) = minxE^(u(⑦)一v(ar)) < 0. One 

can show that xq 우 d아. In fact, if xq E 5Q, then by the maximality 

at xq^ 으(으그사望으〉< 0. Also /?(u(a：o)) — 0(沙(으0)) < 0 because 0 is 

strictly increasing. Thus the boundary condition becomes [으,:0) — 

日씨(으〉]+0(u(⑦o))—0(v(⑦o)) < 0, which is a contradiction. So xq 오 dQ,. 

Therefore tz(^o) > 0 and v(rro) > 0. Since u and v are solutions of (1), 

we have in a neighbourhood JV(xo) of xq^

⑵

_ A(u — v)

I
a=—f-- 厂7--- 竹(日 沙) — 夕(自 以)) — 乃⑵⑵⑦, V)— v<p(x, ?』))]•

Observe that [유( \ 히브이〕그 0. Thus — . A(u — v) < 0. On

the other hand, since is nondecreasing and concave down, we have 

以(⑦o)오(鉛0,沙(⑦o)) — 沙(⑦o)오(⑦o,以(⑦o)) < 0. Then the integral of the 

right side of (2) over N(xq) is positive, which gives a contradiction. 

This shows the uniqueness of solution.

Next, to show the existence of a solution, we consider the Yosida 

approximation on /3 of equations (1):

{
—竹(:c, ?z) Atz + Pu = h 

Qu
u + A— = (I + 시?)—거?/ on W

where A > 0. First we show a priori bound in a space C1,a(Q) of every 

solution to (3), where a £ (0,1). We then look for a fixed point of the
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equation

(4)

a h — Pv
— Au = —7--------r

日?/
u + A— = (Z 十 시?)-1v on dil.

Let u be a solution of equation (3) for ⑦ € Q, i.e., u is a fixed point 

of equation (4). Let Gr,\ be the Green’s function such that

' — AG = 6

G +際 

on
on W.= 0

Then we have

W)=LGR,“y)(!忌쁘쁘)dy

(5) + 느 으 (GK,A(:r,y))(Z + 시?)-1tzQM.

Note that ||Pu||oo < ||시|oo by a C1-version general maximum princi

ple. Now we estimate:

(6)

ZK三으

h — Pu

夕 o Ln
< IK주요,aIL"/—i
<^211^1^11^=^11^.

f\dGR,xh — Pu

dxi (竹 -G 끄 <N
h — Pu

/ (n — l)m
Lm J요 r m-i

i

(7)
< 2||이|<x>|5|[ n < jq|이i。。
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since 느 € Zm(Q) where m > n (therefore< n), ||Pu||oo < 

||이|oo, N = f - 石匕丁面- and r = ||鉛 一 j/||. Here AT is a constant in- 
y* m — 1

dependent of A if A is small by Lemma 1 (ii). Note that the second 

inequality follows from Holder’s inequality.

Next we notice that since (/ + A0)“"1 is increasing,

1(/ + 시?)—그씨 <max{|(Z + A0)—乂니|메。。)|,(Z + 시^-^ll메。。)}

(8) 늬(1 +시3)-1(||씨|。。)| 으/M에。o 으/이|씨|。。

by the assumption of monotonicity of the function 0 € C2 and /3(0) = 

0.

Since is a smooth function for ⑦ G 12, 以 G 9(2, we have

LP으※('+시패(4※기씨hL (|=씌+0

(9) 玄이I 시 |oo

by Lemma 1 (ii) if A is small. Thus (6), (7) and (9) imply that

(10) Pvll。。< *1 씨I* + 이I이I。。) = ^II^Hoo

where M is independent of A since —(구d||c2»« —> 0 as A — 0十, 

0 < A < 1 by Lemma 1 (ii). Therefore, applying the elliptic regularity 

(see, for example, [1] and Theorem 13.1 (d) [7]) to (4) together with 

the fact that ||V씨I* < MH/zHoq, we have u e and

(11)

|| 베 VV2,m < C
h — Pu

竹o
+ 11(1 + A0) —1 에 Wl/2,m(m)+ || 이 |wi,m 

L 끼

Therefore by (8) and (10)

(12) || 씨 |@2,m <Co||/l||oo
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for some generic constant Cq. Since m > n, the Sobolev imbedding 

theorem implies

(13) II메이’이立)으 Mi|^||oo

where some a G (0,1). By the arguments used above, M\ is a constant 

independent of P and A.

Let v G C1,a(Q) and define T : C1,a(Q) —> C1,a(Q) as follows. 

Let u = Tv be a solution of (4). We want to show that T has a 

fixed point for some u € C1,a(Q). To do this, we apply the following 

fixed-point theorem (see page 280 Theorem 11.3 in [3]): let T be a 

compact mapping of a Banach space E into itself, and suppose that 

there exists a constant K such that ||이|e < K for all u G E* and 

0 E [0,1] satisfying u = OTu. Then T has a fixed point.

One can show that T is a compact operator by replacing u by v in 

estimates (6), (7) and (9). Consider equation v = 0Tv for 0 E [0,1]. 

Replacing T by 0T to get an estimate corresponding to (13), it is 

not hard to show that ||이|ci<(j>) < ^Mi||/i||oo < M||이|oo- So there 

exists a constant K > 0 such that ||삐IcM’W⑵ < 시 Thus by the above 

fixed-point theorem, Tu = u for some u E C1,a(Q). We denote it by 

u\. Note that (3) is equivalent to

f — 夕(⑦, u)Au 十 Pu = h

< %
— — = 0(J + A/3)-1u on 312, 

on

and u\ is unique. (See the proof of uniqueness above.) By (12), ||tiA||n/2,m(Q) 

is uniformly bounded in A where A is small. Thus there exists a 

subsequence of ｛以入｝, denoted by ｛以入｝ again, such that 사入 으 以 in 

py2,m(Q)Also by (13), we have a subsequence of ｛ua｝ such that 

iza —> u in C1,a(f2) for some a G (0, a). Thus we have, for v 6
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VT-2’m'(f2) where m' = (—Aua,v) -샤 (一Au,v) and (紀g호, v)

—> (예g ?v) since u\) —스(p(x,u) in (7(j>). So (Au, v) 

= / h-Pu v\ Therefore —Au = 으〒으쁠, and so u is a solution in
\^(x,u)’ / _ 우(幻이)’

pr2’m(Q) Q C1,a(Q) for some a such that 0 < a < a.

The compactness of the solution operator S in (7(j>) such that 

u = Sh follows from (12) and (13) for 以入 — u by the Ascoli-Arzela 

theorem.

REMARK. One can say that u G VT2’m(J2) is a solution to (1) if

. [ Pu — h J
I Vu • Vv dx = I —---- • v ax
Jq Jq 以臥臥)

for all v G Cq°(Q).

Let F(x^ f) € C1(Q x R) such that F(xi 0) =. 0 and |2\(究, 0| < M 

for (:r,f) € Q x R, where M > 0 is some constant. Consider the 

nonlinear elliptic problem

r _<月(:r,u)Au = F(⑦, u)

(14) du
———F /3(u) = 0 on %

V on

where 竹 G G and (3 is strictly increasing, 0(0) = 0.

We define upper and lower solutions for degenerate nonlinear ellip- 

tic equations.

Let <p 之 (月o 之 0, 브• G £m(Q) where m > n. Let u G W2,m(J2) 
new 에

(i) u is called an upper solution of (14) if u satisfies

r —> F(x3u) a.e. in Q

< du
———F 0(以) 之 0 on W
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(ii) tz is a lower solution of (14) if u satisfies

' —< F^x^u) a.e. in Q

“——F 月(以) 玄 0 on W

Now we shall extend the results of the method of upper-lower solution 

to the case of a degenerate elliptic equation.

THEOREM. Suppose UQ and vq are upper and lower solutions, re

spectively, of (14) with Uq > vq on j>. Then there exists a maximal 

solution u of (14) such that vq < u < uq.

PROOF. We choose a constant P such that P > sup立x[a，日 |Z)2刀(:仏 以)| 

where a and b are the minimum of vq and maximum of uo, respectively, 

and Z>2 denotes the derivative with respect to the second component. 

Define a mapping T by tz = Tv, where u is the unique solution of

(15)

' — (竹(:r, u)Atz + Pu = v) + Pv := h

Q 이L
——F 月(이) = 0 on 5Q,
on

where t? € K = C+(f2). For the existence of a unique solution tz, see 

Lemma 2. Note h>Qby choice of P.

Next we claim that T is monotone. We need to show that if 以心 

where i = 1,2, are solutions to

— (竹(:r,Ui)Ai(i + Pui = F(x^Vi) + Pvi := hi 

日•
-g丄 + 0(ui) = 0 on 5Q,

with vi > V2 vi, then u\ > U2- Notice that if vi > V2 Vi, then 

hi > 7^2 > 0 and hi 羊 }Assume ui(x) < U2(x) for at least one x. 

Let minx€立(ui(:r)—tZ2(X)) = 以1(文0)-以2(^0) < 0. Then as in the proof 

(16)
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of uniqueness of the solution in Lemma 2, we can show that xq 오 5Q. 

Also we can use the same argument as in the proof of the uniqueness 

in Lemma 2. Take the integral 心) on both sides of the equation 

—A(ui—U2)a= 瓦@忌@[九i竹(⑦，以2)—九2竹(义以1)—乃(以1夕(：心,以2)— 

wW(：z三 M))L Then the integral of the left side is nonpositive while the 

left side is positive. This contradiction shows u± > U2-

Let uq be an upper solution of (14) and let u = Tuq. Then we have

(17) —A(u — u0) H——g—人u — u0) =' 에■으을〉+ Au0 < 0.

(月(⑦,u) 오(⑦, u)

Suppose u(x) > uq(x) for at least one a: G Q.

Let (u — uo)(⑦o) = maxxe立(u — uo)(X) > 0. Then xq 0 d《l and 

since in the neighbourhood N(xo) of xq, fdN(Xo)해'%저0) < 0, we have 

— J스甘)A(以 一 tzo) > 0. So the integral of the left side over N(xq) in 

(17) is positive, while the left side is nonpositive, a contradiction. 

Thus Tuq < Uq.

Similarly, one can see that Tvq > Vq if vq is a lower solution of 

(14). By the monotonicity of T Oand the inequalities v()< Tvq and 

Tuq < uq, we have Tv G [[沙o, 以o]] for v G [[v(), 以o]]. Now recall that the 

nonlinear operator (—*)A + P)”1 under the nonlinear boundary 

condition is compact in C1,a(Q) for some a E (0,1). (See Lemma 2.) 

Also note that the order interval [po, 以o]] is a closed, bounded convex 

subset of (7( j>). Now apply the Schauder fixed-point theorem to get a 

fixed point u of T. Therefore u is a solution of (14).
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