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A PRIORI L2-ERROR ESTIMATES OF

THE CRANK-NICOLSON DISCONTINUOUS

GALERKIN APPROXIMATIONS FOR
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Min Jung Ahn and Min A Lee

Abstract. In this paper, we analyze discontinuous Galerkin methods
with penalty terms, namly symmetric interior penalty Galerkin meth-

ods, to solve nonlinear parabolic equations. We construct finite element

spaces on which we develop fully discrete approximations using extrapo-
lated Crank-Nicolson method. We adopt an appropriate elliptic-type pro-

jection, which leads to optimal `∞(L2) error estimates of discontinuous

Galerkin approximations in both spatial direction and temporal direction.

1. Introduction

In this work we shall approximate the solution of nonlinear parabolic equa-
tions using a symmetric discontinuous Galerkin method with interior penalties
for the spatial discretization and extrapolated Crank-Nicolson method for the
time stepping. By implementing the extrapolated technique, we induce the
linear systems which can be solved explicitly, thus obviate the order reduction
phenomenon which occurs when the system involved is nonlinear.

Compared to the classical Galerkin method, the discontinuous Galerkin
method is very well suited for adaptive control of error and can deliver high
orders of accuracy when the exact solution is sufficiently smooth.

Discontinuous Galerkin methods with interior penalties for elliptic and para-
bolic equations were introduced by several authors [1, 4, 12]. They generalized
Nitsche method in [5] to treat the Dirichlet boundary condition with penalty
terms on the boundary of the domain. These methods referred to as interior
penalty Galerkin schemes are not locally mass conservative.
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A new type of elementwise conservative discontinuous Galerkin method
for diffusion problem was introduced and analyzed by Oden et al. [6]. Re-
cently, Riviere and Wheeler [9] introduced a locally conservcative discontinu-
ous Galerkin formulation for nonlinear parabolic equations and derived a pri-
ori L∞(L2) and L2(H1) error estimates. However, the error estimate in the
L∞(L2) norm is not optimal.

In [7], Ohm, Lee and Shin constructed semidiscrete discontinuous Galerkin
approximations using interior pinalty terms and obtained the optimal L∞(L2)
error estimate.

Rievière and Wheeler [10] construct semidiscrete approximations which con-
verge optimally in h and suboptimally in r for the energy norm and subopti-
mally for the L2 norm. They also constructed fully discrete approximations and
proved the optimal convergence in the temporal direction. Sun and Wheeler in
[11] analyzed three discontinuous Galerkin methods, namely, symmetric inte-
rior penalty Galerkin method, nonsymmetric interior penalty Galerkin method,
and incomplete interior penalty Galerkin method to approximate the solution
of reactive transport problems. They obtained error estimates in L2(H1) which
are optimal in h and nearly optimal in p and they developed a parabolic lift-
technique for SIPG which leads to h-optimal and nearly p-optimal error esti-
mates in L2(L2) and negative norms.

This paper is organized as follows: In section 2, we introduce model prob-
lems and preliminaries. In section 3, we construct appropriate finite element
spaces and define an auxiliary projection. In section 4, we construct the extrap-
olated fully discrete discontinuous Galerkin method and we prove the optimal
convergence in both spacial and temporal directions in L2 normed space.

2. Model problems and preliminaries

Consider the following nonlinear parabolic differential equation:

ut −∇ · {a(u)∇u} = f(u) in Ω× (0, T ]

(a(u)∇u) · n = 0 on ∂Ω× (0, T ]

u(x, 0) = u0(x) on Ω

(2.1)

where Ω is a bounded convex domain in Rd with d ≥ 2 and n denotes the unit
outward normal vector to ∂Ω and u0(x) is a given function defined on Ω. The
initial data u0(x), f , a are assumed to be such that (1.1) admits a solution
sufficiently smooth to guarantee the convergence results to be presented below.

Assume that the following conditions are satisfied.
1. For any bounded subset B of real numbers. there exist constants γ and

γ∗ such that

0 < γ ≤ a(x, p) ≤ γ∗, 0 < γ ≤ ∂

∂p
a(x, p) ≤ γ∗ for any (x, p) ∈ Ω×B.
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2. a and f are uniformly Lipschitz continuous with respect to their second
variable.

3. The model problem has a unique solution satisfying the following regu-
larity conditions:

u ∈ L2([0, T ], Hs(Ω)), ut ∈ L2([0, T ], Hs(Ω)), for s ≥ 2;

ut ∈ L∞([0, T ], L∞(Ω)), ∇u ∈ L∞(Ω× [0, T ]).

Let Eh = {E1, E2, · · · , ENh
} be a subdivision of Ω where Ei is a triangle or

a quadrilateral if d = 2 and Ei is a 3-simplex or 3-rectangle if d = 3. Let hj =
diam(Ej) and h = max

1≤j≤Nh

hj . We assume Eh satisfies the following regularity

requirement : there exists a constant ρ > 0 such that each Ej contains a
ball of radius ρhj . And also we assume that Eh satisfies the quasi-uniformity
requirement: there is a constant γ > 0 such that

h

hj
≤ γ for j = 1, 2, · · · , Nh.

We denote the edges (resp., faces for d = 3) of the elements by {e1, e2, · · · , ePh
,

ePh+1, · · · , eNh
} where el has positive d − 1 dimensional Lebesque measure,

el ⊂ Ω, 1 ≤ l ≤ Ph, and el ⊂ ∂Ω, Ph + 1 ≤ l ≤ Nh. With each edge (or face)
el, we take nl a unit normal vector to Ei if el = ∂Ei ∩ ∂Ej and i < j. For
l ≥ Ph + 1, nl is taken to be the unit outward vector normal to ∂Ω.

For an s ≥ 0 and a domain E ⊂ Rd, we denote by Hs(E) the Sobolev space
of order s equipped with the usual Sobolev norm ‖ ·‖s,E . We simply write ‖ ·‖s
instead of ‖ · ‖s,Ω if E = Ω and ‖ · ‖E instead of ‖ · ‖s,E if s = 0. And also the
usual seminorm defined on Hs(E) is denoted by | · |s,E .

Now for an s ≥ 0, we let

Hs(Eh) = {v ∈ L2(Ω) | v|Ei
∈ Hs(Ei), i = 1, 2, · · · , Nh}.

For φ ∈ Hs(Eh) with s >
1

2
, we define the average function {φ} and the jump

function [φ] such that

{φ} =
1

2
(φ|Ei)|el +

1

2
(φ|Ej )|el , ∀x ∈ el, 1 ≤ l ≤ Ph

[φ] = (φ|Ei)|el − (φ|Ej )|el , ∀x ∈ el, 1 ≤ l ≤ Ph

where el = ∂Ei ∩ ∂Ej with i < j.
We define the following broken norms on the space Hs(Eh)

|||φ|||2 =

Nh∑
i=1

‖φ‖2Ei

|||φ|||21 =

Nh∑
i=1

(‖φ‖21,Ei
+ h2

i ‖∇2φ‖2Ei
) + Jσβ (φ, φ)
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where

Jσβ (φ, ψ) =

Ph∑
l=1

σl
|el|β

∫
el

[φ][ψ]ds, β > 0

is an interior penalty term and σ is a discrete positive function that takes the
constant value σl on the edge el and is bounded below by σ0 > 0 and above by
σ∗ > 0.

3. Finite element spaces and auxiliary projection

For a positive integer r, we define the following finite element spaces

Dr(Eh) = {v ∈ L2(Ω) | v|Ei
∈ Pr(Ei), i = 1, 2, · · · , Nh}

where Pr(Ei) denotes the set of polynomials of degree less than or equal to r
on Ei.

We use the following hp-approximation results and trace inequality results
whose proofs can be found in [2, 3].

Theorem 3.1. If Ej ∈ Eh and φ ∈ Hs(Ej) then there exist a positive constant
C depending on s, γ, and ρ but independent of φ, r and h and a sequence
zhr ∈ Pr(Ej), r = 1, 2, · · · such that for any 0 ≤ q ≤ s,

‖φ− zhr ‖q,Ej ≤ C
hµ−qj

rs−q
‖φ‖s,Ej s ≥ 0,

‖φ− zhr ‖0,ej ≤ C
h
µ− 1

2
j

rs−
1
2

‖φ‖s,Ej s >
1

2
,

‖φ− zhr ‖1,ej ≤ C
h
µ− 3

2
j

rs−
3
2

‖φ‖s,Ej s >
3

2

where µ = min(r + 1, s) and ej denotes the diamater of Ej.

Theorem 3.2. For each Ej ∈ Eh, there exists a positive constant C depending
only on γ and ρ such that

‖φ‖20,ej ≤ C
(

1

hj
|φ|20,Ej

+ hj |φ|21,Ej

)
, ∀φ ∈ H1(Ej)∥∥∥∥ ∂φ∂nj

∥∥∥∥2

0,ej

≤ C
(

1

hj
|φ|21,Ej

+ hj |φ|22,Ej

)
, ∀φ ∈ H2(Ej)

where ej is an edge or a face of Ej and nj is the unit outward normal vector
to Ej.
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Now we introduce the following bilinear mappingA(ρ; ·, ·) defined onHs(Eh)×
Hs(Eh)

A(ρ;φ, ψ) = (a(ρ)∇φ,∇ψ)−
Ph∑
l=1

∫
el

{a(ρ)∇φ · nl}[ψ]−
Ph∑
l=1

∫
ekl

{a(ρ)∇ψ · nl}[φ]

+ Jσβ (φ, ψ).

Using the bilinear mapping A and (2.1), we construct the weak formulation as
follows:

Find u(·, t) ∈ Hs(Eh) such that

(ut(t), v) +A(u(t);u(t), v) = (f(u(t)), v), ∀ v ∈ Hs(Eh). (3.1)

Now for a λ > 0 we define the following bilinear form Aλ(ρ; ·, ·) on Hs(Eh) ×
Hs(Eh) such that

Aλ(ρ;φ, ψ) = A(ρ;φ, ψ) + λ(φ, ψ)

Aλ satisfies the following boundedness and coercivity properties. The proofs
can be found in [7, 8].

Lemma 3.1. For a λ > 0, there exists a constant C > 0 satisfying

|Aλ(ρ;φ, ψ)| ≤ C|||φ|||1|||ψ|||1 ∀φ, ψ ∈ Hs(Eh).

Lemma 3.2. For a λ > 0, there exists a constant c
∼
> 0 satisfying

Aλ(ρ;φ, φ) ≥ c
∼
|||φ|||21 ∀φ ∈ Dr(Eh).

Now we define an elliptic projection initiated by Wheeler [13] to prove the
optimal L2 error estimates for Galerkin approximation to parabolic differential
equations. We construct a projection ũ(t) : [0, T ]→ Dr(Eh) such that

Aλ(u;u− ũ, v) = 0 ∀v ∈ Dr(Eh)

(ũ(0), v) = (u(0), v).
(3.2)

By Lemma 3.1 and Lemma 3.2, ũ(t) is well-defined.

4. The optimal `∞(L2) error estimates of
fully discrete approximations

In this section by adopting the extrapolated Crank-Nicolson method we
construct fully discrete discontinuous Galerkin approximations and prove the
optimal convergence in L2 normed space.

For a positive integer N > 0 we let k =
T

N
and for 0 ≤ j ≤ N and we define

tj = jk and gj = g(x, tj). For 0 ≤ j ≤ N − 1, we define ∆tgj =
gj+1 − gj

k
,

tj+ 1
2

=
1

2
(tj + tj+1) and gj+ 1

2
=

1

2
(g(tj) + g(tj+1)).
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Now we define fully discrete discontinuous Galerkin approximation {Uj}Nj=0 ⊂
Dr(Eh) as follows,

(∆tUj , v) +A(EUj : Uj+ 1
2
, v) = (f(EUj), v), ∀v ∈ Dr(Eh) (4.1)

where EUj =
3

2
Uj −

1

2
Uj−1, Uj+ 1

2
=

1

2
(Uj + Uj+1).

To apply (4.1), we need two intial stages U0 and U1 to be defined in the
following {

(∆tU0, v) +A(U 1
2
;U 1

2
, v) = (f(U 1

2
), v)

U0 = ũ(0)

where U 1
2

=
1

2
(U0 + U1).

To prove the optimal convergence of u(tj)−Uj in L2 normed space we denote
η(x, t) = u(x, t)− ũ(x, t) and ξ(x, tj) = ũ(x, tj)− Uj(x), j = 0, 1, · · · , N .

Now we state the following approximations for η whose proofs can be found
in [7, 8].

Theorem 4.1. If ut ∈ L2(Hs) and u0 ∈ Hs then there exists a constant C
independent of h and k satisfying

(i) |||ηt|||+ h|||ηt|||1 ≤ Chs(‖ut‖Hs + ‖u0‖s)
(ii) |||η|||+ h|||η|||1 ≤ Chs(‖ut‖L2(Hs) + ‖u0‖s).

Theorem 4.2. If ut ∈ L2(Hs), utt ∈ L∞(Hs), uttt ∈ L∞(Hs) and u0 ∈ Hs

then there exists a constant C independent of h and k satisfying
(i) |||ηtt|||1 ≤ Chs−1{‖ut‖L2(Hs) + ‖utt‖s + ‖u0‖s}
(ii) |||ηttt|||1 ≤ Chs−1{‖ut‖L2(Hs) + ‖utt‖s + ‖uttt‖s + ‖u0‖s}

provided that β ≥ 1

d− 1
.

By simple computations and the applications of Theorem 4.2 we obtain the
following lemmas.

Lemma 4.1. If utt ∈ L∞(Hs), uttt ∈ L∞(Hs) and ρ satisfies

∆tũj − ũt(tj+ 1
2
) = kρj+ 1

2

then there exists a constant C independent of h and k such that

|||ρj+ 1
2
||| ≤ Ck(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs) + ‖uttt‖L∞(Hs))

|||ρj+ 1
2
|||1 ≤ Ck(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs) + ‖uttt‖L∞(Hs)).

Consequently from Lemma 4.1 we conclude that there exists a constant C in-
dependent of k and h such that

|||ρj+ 1
2
||| ≤ Ck and |||ρj+ 1

2
|||1 ≤ Ck

if u is sufficiently smooth.
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Lemma 4.2. If we let utt ∈ L∞(Hs) and rj+ 1
2

= ũ(tj+ 1
2
) − ũj+ 1

2
then there

exists a constant C independent of h and k such that

|||rj+ 1
2
||| ≤ Ck2(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs))

|||rj+ 1
2
|||1 ≤ Ck2(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs)).

Consequently from Lemma 4.2 we conclude that there exists a constant C in-
dependent of k and h such that

|||rj+ 1
2
||| ≤ Ck2, |||rj+ 1

2
|||1 ≤ Ck2,

if u is sufficiently smooth.

Lemma 4.3. If we let utt ∈ L∞(Hs) and ϕj+ 1
2

= ũ(tj+ 1
2
)−( 3

2 ũ(tj)− 1
2 ũ(tj−1))

then there exists a constant C independent of h and k such that

|||ϕj+ 1
2
||| ≤ Ck2(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs))

|||ϕj+ 1
2
|||1 ≤ Ck2(‖u0‖s + ‖ut‖L2(Hs) + ‖utt‖L∞(Hs) + ‖utt‖L∞(H2)).

Consequently from Lemma 4.3, we induce that there exists a constant C inde-
pendent of k and h such that

|||ϕj+ 1
2
||| ≤ Ck2, |||ϕj+ 1

2
|||1 ≤ Ck2

if u is sufficiently smooth.

Theorem 4.3. For 0 < λ < 1 and δ > 0, if ut ∈ L∞(Hs), utt ∈ L∞(Hs) and
uttt ∈ L∞(Hs) then there exists a constant C > 0 independent of h and k such
that for j = 1, 2, · · · , N

|||u(tj)− Uj ||| ≤ C(hµ + k2)(‖u0‖s + ‖ut‖L∞(Hs) + ‖∇ut‖L∞ + ‖utt‖L∞(Hs)

+ ‖uttt‖L∞(Hs))

hold where s =
d

2
+ 1 + δ and µ = min(r + 1, s).

Proof. Applying (4.1) and (2.1), we get

(ut(tj+ 1
2
)−∆tUj , v) +Aλ(u(tj+ 1

2
);u(tj+ 1

2
), v)−Aλ(EUj ;Uj+ 1

2
, v)

= (f(u(tj+ 1
2
))− f(EUj), v) + λ(u(tj+ 1

2
)− Uj+ 1

2
, v).

(4.2)

By the notations of η and ξ, we obtain

ut(tj+ 1
2
)−∆tUj = ut(tj+ 1

2
)−∆tũj + ∆tũj −∆tUj

= ηt(tj+ 1
2
) + kρj+ 1

2
+ ∆tξj .

(4.3)
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By applying the definition of η, we have

Aλ(u(tj+ 1
2
);u(tj+ 1

2
), v)−Aλ(EUj ;Uj+ 1

2
, v)

= Aλ(EUj ; ξj+ 1
2
, v)−Aλ(EUj ; ũj+ 1

2
, v) +Aλ(u(tj+ 1

2
);u(tj+ 1

2
), v)

= Aλ(EUj ; ξj+ 1
2
, v) +Aλ(u(tj+ 1

2
); η(tj+ 1

2
), v)

+Aλ(u(tj+ 1
2
); ũ(tj+ 1

2
)− ũj+ 1

2
, v) +Aλ(u(tj+ 1

2
); ũj+ 1

2
, v)

−Aλ(EUj ; ũj+ 1
2
, v).

(4.4)

Substituting (4.3) and (4.4) in (4.2) and choosing v = ξj+ 1
2

implies

(∆tξj , ξj+ 1
2
) +Aλ(EUj ; ξj+ 1

2
, ξj+ 1

2
)

= − (ηt(tj+ 1
2
) + kρj+ 1

2
, ξj+ 1

2
)−Aλ(u(tj+ 1

2
); η(tj+ 1

2
), ξj+ 1

2
)

−Aλ(u(tj+ 1
2
); rj+ 1

2
, ξj+ 1

2
)−Aλ(u(tj+ 1

2
); ũj+ 1

2
, ξj+ 1

2
)

+Aλ(EUj ; ũj+ 1
2
, ξj+ 1

2
) + (f(u(tj+ 1

2
))− f(EUj), ξj+ 1

2
)

+ λ(u(tj+ 1
2
)− Uj+ 1

2
, ξj+ 1

2
).

(4.5)

Applying the Caucly-Schwarz’s inequality, we have

(∆tξj , ξj+ 1
2
) ≥ 1

2k
(|||ξj+1|||2 − |||ξj |||2).

From (4.5) we obtain,

1

2k

[
|||ξj+1|||2 − |||ξj |||2 + c

∼
|||ξj+ 1

2
|||21

≤ − (ηt(tj+ 1
2
) + kρj+ 1

2
, ξj+ 1

2
) + (f(u(tj+ 1

2
))− f(EUj), ξj+ 1

2
)

+ λ(u(tj+ 1
2
)− Uj+ 1

2
, ξj+ 1

2
)−Aλ(u(tj+ 1

2
); rj+ 1

2
, ξj+ 1

2
)

− (Aλ(u(tj+ 1
2
); ũj+ 1

2
, ξj+ 1

2
)−Aλ(EUj ; ũj+ 1

2
, ξj+ 1

2
))

=

5∑
i=1

Li.

(4.6)

For a sufficiently small ε > 0 by applying Lemma 4.1 there exists a constant
C > 0 such that

|L1| ≤ (|||ηt(tj+ 1
2
)|||+ |||kρj+ 1

2
|||)|||ξj+ 1

2
|||

≤ C(|||ηt(tj+ 1
2
)|||2 + k2|||ρj+ 1

2
|||2 + |||ξj+1|||2 + |||ξj |||2)

≤ C(|||ηt(tj+ 1
2
)|||2 + k4 + |||ξj+1|||2 + |||ξj |||2).

Applying Lemmas 4.1 and 4.2, L2 can be estimated as follows;

|L2| ≤ C|||u(tj+ 1
2
)− EUj ||||||ξj+ 1

2
|||

≤ C(|||η(tj+ 1
2
)|||2 + k4 + |||ξj |||2 + |||ξj+1|||2 + |||ξj−1|||2).
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We obtain the following estimates of L3 and L4.

|L3| ≤ λ(|||η(tj+ 1
2
)|||+ |||rj+ 1

2
|||+ |||ξj+ 1

2
|||)|||ξj+ 1

2
|||

≤ C(|||η(tj+ 1
2
)|||2 + k4 + |||ξj |||2 + |||ξj+1|||2)

and

|L4| ≤ C|||rj+ 1
2
|||1|||ξj+ 1

2
|||1 ≤ Ck4 + ε|||ξj+ 1

2
|||21.

From the definition of L5, we can separate L5 as follows

L5 = ((a(EUj)− a(u(tj+ 1
2
)))∇ũj+ 1

2
,∇ξj+ 1

2
)

−
Ph∑
l=1

∫
el

{a(EUj)− a(u(tj+ 1
2
))∇ũj+ 1

2
· nl}[ξj+ 1

2
]

−
Ph∑
l=1

∫
el

{a(EUj)− a(u(tj+ 1
2
))∇ξj+ 1

2
· nl}[ũj+ 1

2
]

=
3∑
i=1

L5i.

By applying Lemma 4.3, L51 can be estimated in the following way

L51 ≤ C‖∇ũj+ 1
2
‖∞(|||η(tj+ 1

2
)|||+ k2 + |||ξj−1|||+ |||ξj |||)|||∇ξj+ 1

2
|||

≤ C(|||η(tj+ 1
2
)|||2 + k4 + |||ξj−1|||2 + |||ξj |||2) + ε|||ξj+ 1

2
|||21.

Similarly there exists a constant C > 0 such that

L52 ≤ C
Ph∑
l=1

‖∇ũj+ 1
2
‖∞,el(‖η(tj+ 1

2
)‖0,el + ‖ϕj+ 1

2
‖0,el + ‖ξj‖0,el + ‖ξj−1‖0,el)

‖[ξj+ 1
2
]‖0,el

≤ C
Nh∑
i=1

‖∇ũj+ 1
2
‖∞,Ei

(h−1/2‖η(tj+ 1
2
)‖0,Ei

+ h1/2‖∇η(tj+ 1
2
)‖0,Ei

+ h−1/2‖ϕj+ 1
2
‖0,Ei

+ h−1/2‖ξj‖0,Ei
+ h−1/2‖ξj−1‖0,Ei

)|||ξj+ 1
2
|||1h

(
¯
d−1)/2

≤ C(|||η(tj+ 1
2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + k4 + |||ξj |||2 + |||ξj−1|||2) + ε|||ξj+ 1

2
|||21.

By applying the trace inequality we have

L53 ≤ C
Ph∑
l=1

‖∇(ξj+ 1
2
)‖∞,el

(
‖η(tj+ 1

2
)‖0,el + ‖ϕj+ 1

2
‖0,el + ‖ξj‖0,el + ‖ξj−1‖0,el

)
‖[ηj+ 1

2
]‖0,el
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≤ C
Nh∑
i=1

h−1/2‖∇(ξj+ 1
2
)‖∞,Ei

[
‖η(tj+ 1

2
)‖0,Ei + h‖∇η(tj+ 1

2
)‖0,Ei

+‖ϕj+ 1
2
‖0,Ei

+ ‖ξj‖0,Ei
+ ‖ξj−1‖0,Ei

]
h−1/2

(
‖ηj+ 1

2
‖0,Ei

+h‖∇ηj+ 1
2
‖0,Ei

)
≤ C

Nh∑
i=1

‖∇(ξj+ 1
2
)‖0,Ei

(
‖η(tj+ 1

2
)‖0,Ei + h‖∇η(tj+ 1

2
)‖0,Ei

+ ‖ϕj+ 1
2
‖0,Ei + ‖ξj‖0,Ei + ‖ξj−1‖0,Ei

)
h−1− d

2 +s

≤ C
(
|||η(tj+ 1

2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + k4 + |||ξj |||2 + |||ξj−1|||2

)
+ ε|||ξj+ 1

2
|||21.

By combining L5i, 1 ≤ i ≤ 3, we have

|L5| ≤ C
(
|||η(tj+ 1

2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + |||ξj |||2 + |||ξj−1|||2 + k4)

+ 3ε|||ξj+ 1
2
|||21.

Substituting the estimations of Li, 1 ≤ i ≤ 5 into (4.6), we get

1

2k

(
(|||ξj+1|||2 − |||ξj |||2)

)
+ |||ξj+ 1

2
|||21

≤ C
(
|||ηt(tj+ 1

2
)|||2 + k4 + |||ξj+1|||2 + |||ξj |||2 + |||η(tj+ 1

2
)|||2 + |||ξj−1|||2

+ h2|||∇η(tj+ 1
2
)|||2
)
.

(4.7)

If we sum both sides of (4.7) from j = 0 to N − 1, then we obtain

|||ξN |||2 − |||ξ0|||2 + 2k

N−1∑
j=0

|||ξj+ 1
2
|||21

≤ C
(
k

N−1∑
j=0

(
|||η(tj+ 1

2
)|||2 + |||ηt(tj+ 1

2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + k4

)
+ k

N∑
j=0

|||ξj |||2
)

which implies

|||ξN |||2 + 2k

N−1∑
j=0

|||ξj+ 1
2
|||21

≤ |||ξ0|||2 + Ck

N−1∑
j=0

[
|||η(tj+ 1

2
)|||2 + |||ηt(tj+ 1

2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + k4

]
+ Ck

N∑
j=0

|||ξj |||2
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where k is sufficiently small. By applying the discrete version of Gronwall’s
inequality, we have

|||ξN |||2 + k

N−1∑
j=0

|||ξj+ 1
2
|||21

≤ C
{
|||ξ0|||2 + k

N−1∑
j=0

(
|||η(tj+ 1

2
)|||2 + |||ηt(tj+ 1

2
)|||2 + h2|||∇η(tj+ 1

2
)|||2 + k4

)}
.

Therefore by applying the result of the following Lemma 4.1 we have

|||ξ|||`∞(L2) ≤ C(hs + k2),

|||e|||`∞(L2) ≤ C(hs + k2),

which proves the optimal `∞(L2) error estimation of the fully discrete solutions.
�

The following Lemma 4.1 can be proved by the similar process of Theorem
4.3.

Lemma 4.4. For 0 < λ < 1 and δ > 0, if ut ∈ L∞(H
d
2 +1+δ), utt ∈ L∞(H

d
2 +1)

and h−
d
2 k ≤ C0 for some constant C0 then there exists a constant C > 0

independent of h and k

|||ξ1|||L2 ≤ C(hs + k2),

|||e1|||L2 ≤ C(hs + k2).
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