• 제목/요약/키워드: nonlinear elliptic differential equation

검색결과 12건 처리시간 0.019초

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

A SHARP RESULT FOR A NONLINEAR LAPLACIAN DIFFERENTIAL EQUATION

  • Choi, Kyeong-Pyo;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2006
  • We investigate relations between multiplicity of solutions and source terms in a elliptic equation. We have a concerne with a sharp result for multiplicity of a nonlinear Laplacian differential equation.

  • PDF

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

EXTENDED JACOBIN ELLIPTIC FUNCTION METHOD AND ITS APPLICATIONS

  • Chen, Huaitang;Zhang, Hongqing
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.119-130
    • /
    • 2002
  • An extended Jacobin elliptic function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation that Jacobin elliptic functions satisfy and use its solutions to replace Jacobin elliptic functions in Jacobin elliptic function method. It is interesting that many other methods are special cases of our method. Some illustrative equations are investigated by this means.

ON THE ELLIPTIC EQUATION ${\Delta}u+H({\chi})e^{u}$ = 0 ON COMPACT MANIFOLDS

  • Jung, Yoon-Tae;Kim, Seon-Bu;Shin, Cheol-Guen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권1호
    • /
    • pp.9-18
    • /
    • 1996
  • In this paper, we consider the existence of a solution to the elliptic nonlinear partial differential equation ${\Delta}u+H({\chi})e^{u}$ = 0 (H $\neq$ 0) (1) on a compact manifold without boundary. This equation is related to the problem of a pointwise conformal deformation of metrics on two dimensional compact connected manifolds.(omitted)

  • PDF

ON THE CONFORMAL DEFORMATION OVER WARPED PRODUCT MANIFOLDS

  • YOON-TAE JUNG;CHEOL GUEN SHIN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1997
  • Let (M = B$\times$f F, g) be an ($n \geq3$ )-dimensional differential manifold with Riemannian metric g. We solve the following elliptic nonlinear partial differential equation (equation omitted). where $\Delta_{g}$ is the Laplacian in the $\Delta$g-metric and ($h(\chi)$) is the scalar curvature of g and ($H(\chi)$) is a function on M.

  • PDF

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.361-371
    • /
    • 2020
  • Exact solution for nonlinear behavior of clamped-clamped functionally graded (FG) buckled beams is presented. The effective material properties are considered to vary along the thickness direction according to exponential-law form. The in-plane inertia and damping are neglected, and hence the governing equations are reduced to a single nonlinear fourth-order partial-integral-differential equation. The von Kármán geometric nonlinearity has been considered in the formulation. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. Based on the mode of the corresponding linear problem, which readily satisfy the boundary conditions, the frequencies for the nonlinear problem are obtained using the Jacobi elliptic functions. The effects of various parameters such as the Young's modulus ratio, the beam slenderness ratio, the vibration amplitude and the magnitude of axial load on the nonlinear behavior are examined.

수중 유체저장용 막구조물 형상의 이론적 해석 (An Analytic Solution of the Shape of a Partially Filled, Submerged Membrane Container)

  • 최윤락
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.39-43
    • /
    • 2008
  • For a partially filled and deeply submersed membrane container, an analytic solution for similarity shape was studied. The static shape of a membrane container can be expressed as a set of nonlinear ordinary differential equations. These equations are combined into an integrable equation. The solution of the equation is derived in terms of elliptic integrals, the arguments of which contain an unknown at the point of inflection. The point of inflection is determined by using the boundary condition at a separating point. Some characteristic values of the similarity shape were evaluated and the shapes are illustrated.