A SHARP RESULT FOR A NONLINEAR LAPLACIAN DIFFERENTIAL EQUATION

Kyeong-Pyo Choi* and Q-Heung Choi**

Abstract

We investigate relations between multiplicity of solutions and source terms in a elliptic equation. We have a concerne with a sharp result for multiplicity of a nonlinear Laplacian differential equation.

1. Introduction

A semilinear elliptic boundary value problem under the Dirichlet boundary condition

$$
\begin{align*}
A u+b u^{+}-a u^{-} & =t_{1} \phi_{1}+t_{2} \phi_{2} \text { in } \Omega . \tag{1.1}\\
u & =0 \quad \text { on } \quad \partial \Omega .
\end{align*}
$$

Here, the second order elliptic differential operator

$$
A=\sum_{1 \leq i, j \leq n} a_{i, j}(x) D_{i} D_{j}
$$

is a mapping from $L^{2}(\Omega)$ into itself with compact inverse, with eigenvalues $-\lambda_{i}$, each repeated as often as multiplicity, where $a_{i j}=a_{j i} \in C^{\infty}(\bar{\Omega})$.
Ω be a bounded set in $\mathbf{R}^{n}(n \geq 1)$ with smooth boundary $\partial \Omega$. We denote ϕ_{n} to be the eigenfuction corresponding to $\lambda_{n}(n=1,2, \cdots)$ and the eigenfuction such that $\phi_{1}>0$ in Ω and $\int_{\Omega} \phi_{1}^{2}=1$. We will also let ϕ_{i} denote the eigeneunctions corresponding to λ_{i} normalized by inner product

$$
\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \phi_{i} \phi_{j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{cases}
$$

and the set $\left\{\phi_{n} \mid n=1,2, \cdots\right\}$ is an orthogonal set in Hilbert space H.

[^0]We suppose that $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$. we have a concern with the multiplicity of solutions of (1.1) when $h=t_{1} \phi_{1}+t_{2} \phi_{2}$ is generated by two eigenfunctions ϕ_{1} and ϕ_{2}. Then equation (1.1) is equivalent to

$$
\begin{equation*}
A u+b u^{+}-a u^{-}=h \quad \text { in } \quad H . \tag{1.2}
\end{equation*}
$$

Hence we will study the equation (1.2). We use the contraction mapping principle to reduce the problem from an infinite dimensional space in H to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and W be the orthogonal complement of V in H. Let P be an orthogonal projection H onto V. Then every element $u \in H$ is expressed as

$$
u=v+w,
$$

where $v=P u, w=(I-P) u$. Hence equation (1.2) is equavelent to a system

$$
\begin{gather*}
A w+(I-P)\left(b(v+w)^{+}-a(v+w)^{-}\right)=0 \tag{1.3}\\
A v+P\left(b(v+w)^{+}-a(v+w)^{-}\right)=t_{1} \phi_{1}+t_{2} \phi_{2} \tag{1.4}
\end{gather*}
$$

Here we look on (1.3) and (1.4) as a system of two equation in the two unknows v and w.

We know in [2] that for fixed $v \in V$ (1.3) has a unique solution $w=\theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous(with respect to the L^{2}-norm) in terms of v.

Hence, the study of the multipicity of solution of (1.2) is reduced to the study of the multipicity of solutions of an equivalent problem

$$
\begin{equation*}
A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)=t_{1} \phi_{1}+t_{2} \phi_{2} \tag{1.5}
\end{equation*}
$$

defined on the two dimensional subspace V spanned by $\left\{\phi_{1}, \phi_{2}\right\}$.
While one feels intuively that (1.5) ought to be easier to solve than (1.2), there is the disadvantage of an implicitly defined term $\theta(v)$ in the equation. However, in our case, it turns out that we know $\theta(v)$ for some special $v^{\prime} s$.

If $v \geq 0$ or $v \leq 0$, then $\theta(v) \equiv 0$. For example, let us take $v \geq 0$ and $\theta(v)=0$. Then equation (1.3) reduces to

$$
A 0+(I-P)\left(b v^{+}-a v^{-}\right)=0
$$

which is satisfied because $v^{+}=v, v^{-}=0$ and $(I-P) v=0$, since $v \in V$. Since the subspace V is spanned by $\left\{\phi_{1}, \phi_{2}\right\}$ and ϕ_{1} is a positive eigenfuction, there exists a cone C_{1} defined by

$$
C_{1}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|c_{1} \geq 0,\left|c_{2}\right| \leq q c_{1}\right\}\right.
$$

for some $q>0$ so that $v \geq 0$ for all $v \in C_{1}$ and a cone C_{3} defined by

$$
C_{3}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|c_{1} \leq 0,\left|c_{2}\right| \leq q\right| c_{1} \mid\right\}
$$

so that $v \leq 0$ for all $v \in C_{3}$.
Thus, even if we do not know $\theta(v)$ for all $v \in V$, we know $\theta(v) \equiv 0$ for $v \in C_{1} \cup C_{3}$. Now we define a map $\Pi: V \rightarrow V$ given by

$$
\begin{equation*}
\Pi(v)=A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right), \quad v \in V \tag{1.6}
\end{equation*}
$$

Π of (1.6) is continuous on V, and we can see that for $v \in V$

$$
\begin{equation*}
\Pi(c v)=c \Pi(v) \quad(c \geq 0) \tag{1.7}
\end{equation*}
$$

We investigate the image of the cones C_{1}, C_{3} under Π. First, we consider the image of cone C_{1}. If $v=c_{1} \phi_{1}+c_{2} \phi_{2} \geq 0$, we have

$$
\begin{aligned}
\Pi(v) & =A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& =-c_{1} \lambda_{1} \phi_{1}-c_{2} \lambda_{2} \phi_{2}+b\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) \\
& =c_{1}\left(b-\lambda_{1}\right) \phi_{1}+c_{2}\left(b-\lambda_{2}\right) \phi_{2}
\end{aligned}
$$

Thus the image of the rays $c_{1} \phi_{1} \pm q c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ can be caculated and they are

$$
\begin{equation*}
c_{1}\left(b-\lambda_{1}\right) \phi_{1} \pm q c_{1}\left(b-\lambda_{2}\right) \phi_{2} \quad\left(c_{1} \geq 0\right) \tag{1.8}
\end{equation*}
$$

Therefore if $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$, then Π maps C_{1} onto the cone

$$
D_{1}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}\left|d_{1} \geq 0,\left|d_{2}\right| \leq q\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right) d_{1}\right\}\right.
$$

Second, we consider the image of the cone C_{3}. If

$$
v=-c_{1} \phi_{1}+c_{2} \phi_{2} \leq 0 \quad\left(c_{1} \geq 0,\left|c_{2}\right| \leq q c_{1}\right)
$$

we have

$$
\begin{aligned}
\Pi(v) & =A v+P\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& =A v+P(a v) \\
& =c_{1}\left(\lambda_{1}-a\right) \phi_{1}-c_{2}\left(\lambda_{2}-a\right) \phi_{2}
\end{aligned}
$$

Thus the image of the rays $-c_{1} \phi_{1} \pm q c_{1} \phi_{2}\left(c_{1} \geq 0\right)$ can be caculated and they are

$$
\begin{equation*}
c_{1}\left(\lambda_{1}-a\right) \phi_{1} \pm q c_{1}\left(\lambda_{2}-a\right) \phi_{2} \quad\left(c_{1} \geq 0\right) \tag{1.9}
\end{equation*}
$$

Therefore, if $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$, then Π maps C_{3} onto the cone

$$
D_{3}=\left\{d_{1} \phi_{1}+d_{2} \phi_{2}\left|d_{1} \geq 0,\left|d_{2}\right| \leq q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) d_{1}\right\}\right.
$$

2. The existence of solutions

We note that $D_{1} \subset D_{3}$ since $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$. We investigate the images of the cones C_{2}, C_{4} under Π. we suppose that $a<\lambda_{1}, \lambda_{2}<b<$ $\lambda_{3}, h=t_{1} \phi_{1}+t_{2} \phi_{2}$. Now we set

$$
\begin{gathered}
C_{2}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|\quad c_{2} \geq 0, c_{2} \geq q\right| c_{1} \mid\right\} \\
C_{4}=\left\{v=c_{1} \phi_{1}+c_{2} \phi_{2} \quad\left|\quad c_{2} \leq 0,\left|c_{2}\right| \geq q\right| c_{1} \mid\right\}
\end{gathered}
$$

Then the union of C_{1}, C_{2}, and C_{3}, C_{4} are the space V.
We note that $D_{1} \subset D_{3}$ since $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$. We investigate the images of the cones C_{2}, C_{4} under Π.

To investigate the images of the cones C_{2}, C_{4}, we need the following lemma.

Lemma 2.1. There exists $d>0$ so that

$$
\left(\Pi(v), \phi_{1}\right) \geq d\left|c_{2}\right| \text { for all } v=c_{1} \phi_{1}+c_{2} \phi_{2} \in V .
$$

Proof. Let $g(u)=b u^{+}-a u^{-}$and let $v=c_{1} \phi_{1}+c_{2} \phi_{2}$. Let $u=c_{1} \phi_{1}+$ $c_{2} \phi_{2}+\theta\left(c_{1}, c_{2}\right)$. Then

$$
\Pi\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)=A\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)+P\left(g\left(c_{1} \phi_{1}+c_{2} \phi_{2}+\theta\left(c_{1}, c_{2}\right)\right)\right) .
$$

So we have

$$
\left(\Pi(v), \phi_{1}\right)=\left(\left(A+\lambda_{1}\right)\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right), \phi_{1}\right)+\left(g(u)-\lambda_{1} u, \phi_{1}\right) .
$$

The first term is zero because $\left(A+\lambda_{1}\right) \phi_{1}=0$ and A is a self-adjoint. The second term satisfies

$$
\begin{aligned}
g(u)-\lambda_{1} u & =b u^{+}-a u^{-}-\lambda_{1}\left(u^{+}-u^{-}\right) \\
& =\left(b-\lambda_{1}\right) u^{+}+\left(\lambda_{1}-a\right) u^{-} \geq \gamma|u|,
\end{aligned}
$$

where $\gamma=\min \left\{b-\lambda_{1}, \lambda_{1}-a\right\}>0$. Therefore

$$
\left(\Pi(v), \phi_{1}\right) \geq \gamma \int|u| \phi_{1} .
$$

Now there exists $d>0$ so that $\gamma \phi_{1} \geq d\left|\phi_{2}\right|$ and therefore

$$
\gamma \int|u| \phi_{1} \geq d \int|u|\left|\phi_{2}\right| \geq d\left|\int u \phi_{2}\right|=d\left|c_{2}\right| .
$$

Lemma 2.1 means that the image of Π is contained in the right half-plane. That is, $\Pi\left(C_{2}\right)$ and $\Pi\left(C_{4}\right)$ are the cones in the right half-plane. The image of C_{2} is the cone containing

$$
D_{2}=\left\{\begin{array}{l|l}
d_{1} \phi_{1}+d_{2} \phi_{2} & \left.d_{1} \geq 0,-q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) d_{1} \leq d_{2} \leq q\left(\frac{\lambda_{2}-b}{\lambda_{1}-b}\right) d_{1}\right\}, ~
\end{array}\right.
$$

and the image of C_{4} under Π is the containing

$$
D_{4}=\left\{\begin{array}{l|l}
d_{1} \phi_{1}+d_{2} \phi_{2} & \left.d_{1} \geq 0,-q\left(\frac{\lambda_{2}-b}{\lambda_{1}-b}\right) d_{1} \leq d_{2} \leq q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) d_{1}\right\} .
\end{array}\right.
$$

We consider the restriction $\left.\Pi\right|_{C_{i}}(1 \leq i \leq 4)$ of Π to the cone C_{i}. Let $\Pi_{i}=\left.\Pi\right|_{C_{i}}$, i.e.,

$$
\Pi_{i}: C_{i} \rightarrow V
$$

We consider the segments s_{2} and s_{4} as follows

$$
\begin{aligned}
& s_{2}=\left\{\phi_{1}+d_{2} \phi_{2} \left\lvert\,-q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right) \leq d_{2} \leq q\left(\frac{\lambda_{2}-b}{\lambda_{1}-b}\right)\right.\right\} \\
& s_{4}=\left\{\phi_{1}+d_{2} \phi_{2} \left\lvert\,-q\left(\frac{\lambda_{2}-b}{\lambda_{1}-b}\right) \leq d_{2} \leq q\left(\frac{\lambda_{2}-a}{\lambda_{1}-a}\right)\right.\right\}
\end{aligned}
$$

We investigate the inverse image $\Pi_{2}^{-1}\left(s_{2}\right), \Pi_{4}^{-1}\left(s_{4}\right)$. We note that $\Pi_{i}\left(C_{i}\right)(i=$ $2,4)$ contains D_{i}.

By (1.7) and Lemma 2.1, we can see the following lemma.
Lemma 2.2. Let $\sigma_{i}(i=2,4)$ be any simple path in D_{i} with end points on ∂D_{i}, where each ray (starting from the origin) in D_{i} intersect only one point of σ_{i}. Then the inverse image $\Pi_{i}^{-1}\left(\sigma_{i}\right)$ of σ_{i} is a simple path in C_{i} with end points on ∂C_{i}, where any ray in C_{i}, starting from the origin, intersects only one point of this path.

With Lemma 2.1 and Lemma 2.2, we have the following theorem.
Theorem 2.3. (a) The restriction $\Pi_{i}: C_{i} \rightarrow D_{i}(i=1,3)$ is bijective.
(b) $\Pi: C_{j} \rightarrow D_{j}(j=2,4)$ is surjective. Therefore, Π maps V onto D_{3}.

Proof. First, we shall show that $\Pi_{1}: C_{1} \rightarrow D_{1}$ is bijective. By (1.8), the restriction Π_{1} maps C_{1} onto D_{1}. We consider the segment

$$
s_{1}=\left\{\phi_{1}+d_{2} \phi_{2}| | d_{2} \left\lvert\, \leq q\left(\frac{b-\lambda_{2}}{b-\lambda_{1}}\right)\right.\right\}
$$

Then the inverse image $\Pi_{1}^{-1}\left(s_{1}\right)$ is a segment

$$
\mathcal{S}_{1}=\left\{\left.\frac{1}{b-\lambda_{1}}\left(\phi_{1}+c_{2} \phi_{2}\right)| | c_{2} \right\rvert\, \leq q\right\}
$$

By Lemma 2.2, $\Pi_{1}: C_{1} \rightarrow D_{1}$ is bijective. Second, in the same way we can show that $\Pi_{3}: C_{3} \rightarrow D_{3}$ is bijective. (b) By (1.9) and Lemma 2.2, the restriction $\Pi_{j}: C_{j} \rightarrow D_{j}(j=2,4)$ is surjective.

We note that all cones D_{2}, D_{3}, D_{4} contain the cone D_{1}. Also D_{3}, D_{2} contain the cone $D_{2} \backslash D_{1}$, and D_{3}, D_{4} contain the cone $D_{4} \backslash D_{1}$.

Hence we have the following theorem.
Theorem 2.3 Suppose $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$. Let $h=t_{1} \phi_{1}+t_{2} \phi_{2}$. Then we have the following.
(a) If $h \in \operatorname{Int} D_{1}$, then equation (1.1) has at least four solutions.
(b) If $h \in \partial D_{1}$, then equation (1.1) has at least three solutions.
(c) If $h \in \operatorname{Int}\left(D_{3} \backslash D_{1}\right)$, then equation (1.1) has at least two solutions.
(d) If $h \in \partial D_{3}$, then equation (1.1) has at least one solution.
(e) If h does not belong to the cone D_{3}, then equation (1.1) has no solution.

3. A sharp result for multiplicity

We shall investigate a sharp result for the multiplicity of equation (1.1) when the source term h belong to the interior $\operatorname{Int} D_{1}$ of the cone D_{1}, and A is the Laplacian operator L.

Let A be a second order linear elliptic differential operator. Given a function $\eta \in L^{\infty}(\Omega)$, let us consider the linear eigenvalue problem

$$
\begin{align*}
-A u & =\lambda \eta u \quad \text { in } \quad \Omega, \\
u & =0 \quad \text { on } \quad \partial \Omega . \tag{3.1}
\end{align*}
$$

An eigenvalue of (3.1) is a λ such that (3.1) has a solution $u \neq 0$. Any $\phi \neq 0$ satisfying (3.1) is an eigenfunction associated to the eigenvalue λ.

Lemma 3.1.(Comparison Property)[1]. If $\eta \leq \xi$ in Ω, then $\lambda_{k}(\eta) \geq \lambda_{k}(\xi)$; if $\eta<\xi$ in a subset of positive measure, then $\lambda_{k}(\eta)>\lambda_{k}(\xi)$. In particular, if $\eta<\lambda_{k}$, then $\lambda_{k}(\eta)>1$; if $\eta>\lambda_{k}$, then $\lambda_{k}(\eta)<1$.

Given u, we denote by $\mathcal{C}(u)$ the characteristic function of the positive set of u, that is,

$$
[\mathcal{C}(u)](x)=\left\{\begin{array}{lll}
1, & \text { if } & u(x)>0 \\
0, & \text { if } & u(x) \leq 0
\end{array}\right.
$$

We set $\alpha(u)=b \mathcal{C}(u)+a \mathcal{C}(-u)$ when the measure of $\{x \mid u(x)=0\}$ is zero.

Definition[6]. We say that u is a nondegenerate solution of equation (1.1) if the problem

$$
\begin{array}{rlrl}
-A v & =\alpha(u) v & & \text { in } \quad \Omega \\
v & =0 & \text { on } & \\
& \partial \Omega
\end{array}
$$

has only the trivial solution $v \equiv 0$.

We have a concern only when A is the Laplacian operator L. We denote by K the operator $(-L)^{-1}$ from $H^{-1}(\Omega)$ into E and we consider it as a compact operator on H in a view of Sobolev's imbeding theorems.

Given $\alpha \in L^{\frac{n}{2}}(\Omega)$ one can consider the eigenvalue problem

$$
\begin{align*}
-L v & =\nu \alpha v \quad \text { in } \quad \Omega \\
v & =0 \quad \text { on } \quad \partial \Omega \tag{3.2}
\end{align*}
$$

It is well known $([6])$ that if $\alpha>0$ in a set of positive measure, then the positive number ν for which (3.2) has a nontrivial solution that is a term of a sequence $\nu_{1}(\alpha), \nu_{2}(\alpha), \cdots, \nu_{j}(\alpha), \cdots$ diverging to $+\infty$. Since each eigenvalue ν_{j} has finite multiplicity, we can repeat it in the sequence as many times as its multiplicity.

We consider the nonlinear Lapacian differential equation

$$
\begin{equation*}
L u+b u^{+}-a u^{-}=h(x) \quad \text { in } \quad H \tag{3.3}
\end{equation*}
$$

Lemma 3.2. Assume $a<\lambda_{1}$ and $b \leq \lambda_{k}$ for a given integer $k>2$. Let $h(x)=\phi_{1}+t_{2} \phi_{2} \in \operatorname{Int} D_{1}$. Then if u is a solution of (3.3) which changes sign in Ω, we have

$$
\nu_{1}(\alpha(u))<1<\nu_{k-1}(\alpha(u))
$$

Proof. Equation (3.3) has the positive solution $u_{p}=\left(b-\lambda_{1}\right)^{-1} \phi_{1}+t_{2}(b-$ $\left.\lambda_{2}\right)^{-1} \phi_{2}$ and a negative solution $u_{n}=\left(a-\lambda_{1}\right)^{-1} \phi_{1}+t_{2}\left(a-\lambda_{2}\right)^{-1} \phi_{2}$. Writing (3.3) for u and u_{p} and substracting we get:

$$
\begin{equation*}
-L\left(u_{p}-u\right)=b\left(u_{p}-u^{+}\right)+a u^{-} \tag{3.4}
\end{equation*}
$$

Let us use the notation

$$
\hat{\alpha}=\frac{b\left(u_{p}-u^{+}\right)+a u^{-}}{u_{p}-u} .
$$

We have the inequalities:

$$
\begin{equation*}
a<\alpha(u)<\hat{\alpha}<b \tag{3.5}
\end{equation*}
$$

By (3.4), $\nu_{j}(\hat{\alpha})=1$ for some j and by (3.5) $j \in\{1,2, \cdots, k-1\}$. We have similar computations with u_{n} and find a function $\check{\alpha}$ such that $\nu_{j}(\check{\alpha})=1$ for some $j^{\prime} \in\{1,2, \cdots, k-1\}$ and

$$
\begin{equation*}
a<\check{\alpha}<\alpha(u)<b, \tag{3.6}
\end{equation*}
$$

where each inequality holds on a subset of positive measure in Ω. By Lemma 3.1, we have

$$
\begin{gathered}
1=\nu_{j}(\hat{\alpha}) \leq \nu_{k-1}(\hat{\alpha})<\nu_{k-1}(\alpha(u)), \\
\nu_{1}(\alpha(u))<\nu_{1}(\check{\alpha}) \leq \nu_{j^{\prime}}(\check{\alpha})=1,
\end{gathered}
$$

which proves the lemma.

Theorem 3.3. Let $a<\lambda_{1}, \lambda_{2}<b<\lambda_{3}$ and let $h \in \operatorname{Int} D_{1}$. Then equation (3.3) has exactly four nondegenerate solutions.

Proof. The staetment follows from Lemma 3.2 which ensures that any solution which changes sign is nondegenerate and has local degree -1 . Since we know that the solutions of constant sign only are u_{p} and u_{n} and they have local degree 1 , by using the equality:

$$
d_{L S}\left(u-K\left(b u^{+}-a u^{-}\right), B(0, r),-K \phi_{1}\right)=0
$$

which is proved in [6] for large positive r. By the homotopy invariance property of degree, if $h \in \operatorname{Int} D_{1}$, then

$$
d_{L S}\left(u-K\left(b u^{+}-a u^{-}\right), B(0, r),-K h\right)=0
$$

for large positive r. This completes the proof.

References

1. A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge, University Press, Cambridge Studies in Advanced Math. No. 34, 1993.
2. Q. H. Choi and K. P. Choi, The Exitence of Solutions of an Ambrosetti-Prodi Type Nonlinear Elliptic Equation, Far East J. Dynamical Systems, 4(1) (2002), 39-50.
3. Q. H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations, 117 (1995), 390-410.
4. A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem., J. of Math. Analysis and Applications, 86 (1981), 282-294.
5. P. J. McKenna, Topolgical methods for asymmetric boundary value problem, Lecture Note Series, No.11, Research Institute of Math., Global Analysis Research Center, Seoul National University, 1993.
6. S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. Herni Poincare, 2 (1985), 143-156.

*

Department of Mathematics
Inha University
Incheon 402-751, Republic of Korea
E-mail: kpchoi@inha.ac.kr
**
Department of Mathematics Education
Inha University
Incheon 402-751, Republic of Korea
E-mail: qheung@inha.ac.kr

[^0]: Received November 16, 2006.
 2000 Mathematics Subject Classifications: Primary 46L05, 55R10.
 Key words and phrases: equivalence bimodule.

