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A SHARP RESULT FOR A NONLINEAR
LAPLACIAN DIFFERENTIAL EQUATION

Kyeong-Pyo Choi* and Q-Heung Choi**

Abstract. We investigate relations between multiplicity of solutions and
source terms in a elliptic equation. We have a concerne with a sharp result
for multiplicity of a nonlinear Laplacian differential equation.

1. Introduction

A semilinear elliptic boundary value problem under the Dirichlet bound-

ary condition

(1.1)
Au + bu+ − au− = t1φ1 + t2φ2 in Ω.

u = 0 on ∂Ω.

Here, the second order elliptic differential operator

A =
∑

1≤i,j≤n

ai,j(x)DiDj

is a mapping from L2(Ω) into itself with compact inverse, with eigenvalues

−λi, each repeated as often as multiplicity, where aij = aji∈ C∞(Ω̄).

Ω be a bounded set in Rn(n ≥ 1) with smooth boundary ∂Ω. We denote

φn to be the eigenfuction corresponding to λn(n = 1, 2, · · · ) and the eigen-

fuction such that φ1 > 0 in Ω and
∫
Ω

φ2
1 = 1. We will also let φi denote the

eigeneunctions corresponding to λi normalized by inner product

(φi, φj) =
∫

Ω

φiφj =
{

1 if i = j,

0 if i 6= j,

and the set {φn| n = 1, 2, · · · } is an orthogonal set in Hilbert space H.
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We suppose that a < λ1, λ2 < b < λ3. we have a concern with the

multiplicity of solutions of (1.1) when h = t1φ1 + t2φ2 is generated by two

eigenfunctions φ1 and φ2. Then equation (1.1) is equivalent to

(1.2) Au + bu+ − au− = h in H.

Hence we will study the equation (1.2). We use the contraction mapping

principle to reduce the problem from an infinite dimensional space in H to

a finite dimensional one.

Let V be the two dimensional subspace of H spanned by {φ1, φ2} and W

be the orthogonal complement of V in H. Let P be an orthogonal projection

H onto V. Then every element u ∈ H is expressed as

u = v + w,

where v = Pu, w = (I−P )u. Hence equation (1.2) is equavelent to a system

(1.3) Aw + (I − P )(b(v + w)+ − a(v + w)−) = 0

(1.4) Av + P (b(v + w)+ − a(v + w)−) = t1φ1 + t2φ2.

Here we look on (1.3) and (1.4) as a system of two equation in the two

unknows v and w.

We know in [2] that for fixed v ∈ V (1.3) has a unique solution w = θ(v).

Furthermore, θ(v) is Lipschitz continuous(with respect to the L2-norm) in

terms of v.

Hence, the study of the multipicity of solution of (1.2) is reduced to the

study of the multipicity of solutions of an equivalent problem

(1.5) Av + P (b(v + θ(v))+ − a(v + θ(v))−) = t1φ1 + t2φ2

defined on the two dimensional subspace V spanned by {φ1, φ2}.
While one feels intuively that (1.5) ought to be easier to solve than (1.2),

there is the disadvantage of an implicitly defined term θ(v) in the equation.

However, in our case, it turns out that we know θ(v) for some special v′s.
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If v ≥ 0 or v ≤ 0, then θ(v) ≡ 0. For example, let us take v ≥ 0 and

θ(v) = 0. Then equation (1.3) reduces to

A0 + (I − P )(bv+ − av−) = 0,

which is satisfied because v+ = v, v− = 0 and (I − P )v = 0, since v ∈ V.

Since the subspace V is spanned by {φ1, φ2} and φ1 is a positive eigenfuction,

there exists a cone C1 defined by

C1 = {v = c1φ1 + c2φ2 | c1 ≥ 0, |c2| ≤ qc1}

for some q > 0 so that v ≥ 0 for all v ∈ C1 and a cone C3 defined by

C3 = {v = c1φ1 + c2φ2 | c1 ≤ 0, |c2| ≤ q|c1|}

so that v ≤ 0 for all v ∈ C3.

Thus, even if we do not know θ(v) for all v ∈ V , we know θ(v) ≡ 0 for

v ∈ C1 ∪ C3. Now we define a map Π : V → V given by

(1.6) Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V.

Π of (1.6) is continuous on V , and we can see that for v ∈ V

(1.7) Π(cv) = cΠ(v) (c ≥ 0).

We investigate the image of the cones C1, C3 under Π. First, we consider

the image of cone C1. If v = c1φ1 + c2φ2 ≥ 0, we have

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−)

= −c1λ1φ1 − c2λ2φ2 + b(c1φ1 + c2φ2)

= c1(b− λ1)φ1 + c2(b− λ2)φ2.

Thus the image of the rays c1φ1 ± qc1φ2(c1 ≥ 0) can be caculated and they

are

(1.8) c1(b− λ1)φ1 ± qc1(b− λ2)φ2 (c1 ≥ 0).
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Therefore if a < λ1, λ2 < b < λ3, then Π maps C1 onto the cone

D1 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≥ 0, |d2| ≤ q

(
b− λ2

b− λ1

)
d1

}
.

Second, we consider the image of the cone C3. If

v = −c1φ1 + c2φ2 ≤ 0 (c1 ≥ 0, |c2| ≤ qc1),

we have
Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−)

= Av + P (av)

= c1(λ1 − a)φ1 − c2(λ2 − a)φ2.

Thus the image of the rays −c1φ1 ± qc1φ2(c1 ≥ 0) can be caculated and

they are

(1.9) c1(λ1 − a)φ1 ± qc1(λ2 − a)φ2 (c1 ≥ 0).

Therefore, if a < λ1, λ2 < b < λ3, then Π maps C3 onto the cone

D3 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≥ 0, |d2| ≤ q

(
λ2 − a

λ1 − a

)
d1

}
.

2. The existence of solutions

We note that D1 ⊂ D3 since a < λ1, λ2 < b < λ3. We investigate the

images of the cones C2, C4 under Π. we suppose that a < λ1, λ2 < b <

λ3, h = t1φ1 + t2φ2. Now we set

C2 = {v = c1φ1 + c2φ2 | c2 ≥ 0, c2 ≥ q|c1|},

C4 = {v = c1φ1 + c2φ2 | c2 ≤ 0, |c2| ≥ q|c1|},

Then the union of C1, C2, and C3, C4 are the space V.

We note that D1 ⊂ D3 since a < λ1, λ2 < b < λ3. We investigate the

images of the cones C2, C4 under Π.

To investigate the images of the cones C2, C4, we need the following

lemma.
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Lemma 2.1. There exists d > 0 so that

(Π(v), φ1) ≥ d|c2| for all v = c1φ1 + c2φ2 ∈ V.

Proof. Let g(u) = bu+ − au− and let v = c1φ1 + c2φ2. Let u = c1φ1 +

c2φ2 + θ(c1, c2). Then

Π(c1φ1 + c2φ2) = A(c1φ1 + c2φ2) + P (g(c1φ1 + c2φ2 + θ(c1, c2))).

So we have

(Π(v), φ1) = ((A + λ1)(c1φ1 + c2φ2), φ1) + (g(u)− λ1u, φ1).

The first term is zero because (A + λ1)φ1 = 0 and A is a self-adjoint. The

second term satisfies

g(u)− λ1u = bu+ − au− − λ1(u+ − u−)

= (b− λ1)u+ + (λ1 − a)u− ≥ γ|u|,
where γ = min{b− λ1, λ1 − a} > 0. Therefore

(Π(v), φ1) ≥ γ

∫
|u|φ1.

Now there exists d > 0 so that γφ1 ≥ d|φ2| and therefore

γ

∫
|u|φ1 ≥ d

∫
|u||φ2| ≥ d

∣∣∣∣
∫

uφ2

∣∣∣∣ = d|c2|. ¤

Lemma 2.1 means that the image of Π is contained in the right half-plane.

That is, Π(C2) and Π(C4) are the cones in the right half-plane. The image

of C2 is the cone containing

D2 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≥ 0,−q

(
λ2 − a

λ1 − a

)
d1 ≤ d2 ≤ q

(
λ2 − b

λ1 − b

)
d1

}
,

and the image of C4 under Π is the containing

D4 =
{

d1φ1 + d2φ2

∣∣∣∣ d1 ≥ 0,−q

(
λ2 − b

λ1 − b

)
d1 ≤ d2 ≤ q

(
λ2 − a

λ1 − a

)
d1

}
.



398 KYEONG–PYO CHOI AND Q–HEUNG CHOI

We consider the restriction Π|Ci
(1 ≤ i ≤ 4) of Π to the cone Ci. Let

Πi = Π|Ci , i.e.,

Πi : Ci → V.

We consider the segments s2 and s4 as follows

s2 =
{

φ1 + d2φ2

∣∣∣∣− q

(
λ2 − a

λ1 − a

)
≤ d2 ≤ q

(
λ2 − b

λ1 − b

)}
,

s4 =
{

φ1 + d2φ2

∣∣∣∣− q

(
λ2 − b

λ1 − b

)
≤ d2 ≤ q

(
λ2 − a

λ1 − a

)}
.

We investigate the inverse image Π−1
2 (s2),Π−1

4 (s4). We note that Πi(Ci)(i =

2, 4) contains Di.

By (1.7) and Lemma 2.1, we can see the following lemma.

Lemma 2.2. Let σi(i = 2, 4) be any simple path in Di with end points on

∂Di, where each ray (starting from the origin) in Di intersect only one point

of σi. Then the inverse image Π−1
i (σi) of σi is a simple path in Ci with end

points on ∂Ci, where any ray in Ci, starting from the origin, intersects only

one point of this path.

With Lemma 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. (a) The restriction Πi : Ci → Di(i = 1, 3) is bijective.

(b) Π : Cj → Dj(j = 2, 4) is surjective. Therefore, Π maps V onto D3.

Proof. First, we shall show that Π1 : C1 → D1 is bijective. By (1.8), the

restriction Π1 maps C1 onto D1. We consider the segment

s1 =
{

φ1 + d2φ2

∣∣∣∣ |d2| ≤ q

(
b− λ2

b− λ1

)}
.

Then the inverse image Π−1
1 (s1) is a segment

S1 =
{

1
b− λ1

(φ1 + c2φ2)
∣∣∣∣ |c2| ≤ q

}
.

By Lemma 2.2, Π1 : C1 → D1 is bijective. Second, in the same way we

can show that Π3 : C3 → D3 is bijective. (b) By (1.9) and Lemma 2.2, the

restriction Πj : Cj → Dj(j = 2, 4) is surjective. ¤
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We note that all cones D2, D3, D4 contain the cone D1. Also D3, D2

contain the cone D2\D1, and D3, D4 contain the cone D4\D1.

Hence we have the following theorem.

Theorem 2.3 Suppose a < λ1, λ2 < b < λ3. Let h = t1φ1 + t2φ2. Then we

have the following.

(a) If h ∈ IntD1, then equation (1.1) has at least four solutions.

(b) If h ∈ ∂D1, then equation (1.1) has at least three solutions.

(c) If h ∈ Int(D3\D1), then equation (1.1) has at least two solutions.

(d) If h ∈ ∂D3, then equation (1.1) has at least one solution.

(e) If h does not belong to the cone D3, then equation (1.1) has no solu-

tion.

3. A sharp result for multiplicity

We shall investigate a sharp result for the multiplicity of equation (1.1)

when the source term h belong to the interior IntD1 of the cone D1, and A

is the Laplacian operator L.

Let A be a second order linear elliptic differential operator. Given a

function η ∈ L∞(Ω), let us consider the linear eigenvalue problem

(3.1)
−Au = ληu in Ω,

u = 0 on ∂Ω.

An eigenvalue of (3.1) is a λ such that (3.1) has a solution u 6= 0. Any φ 6= 0

satisfying (3.1) is an eigenfunction associated to the eigenvalue λ.

Lemma 3.1.(Comparison Property)[1]. If η ≤ ξ in Ω, then λk(η) ≥ λk(ξ);

if η < ξ in a subset of positive measure, then λk(η) > λk(ξ). In particular,

if η < λk, then λk(η) > 1; if η > λk, then λk(η) < 1.

Given u, we denote by C(u) the characteristic function of the positive set

of u, that is,

[C(u)](x) =
{

1, if u(x) > 0
0, if u(x) ≤ 0.
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We set α(u) = bC(u) + aC(−u) when the measure of {x|u(x) = 0} is zero.

Definition[6]. We say that u is a nondegenerate solution of equation (1.1)

if the problem

−Av = α(u)v in Ω,

v = 0 on ∂Ω.

has only the trivial solution v ≡ 0.

We have a concern only when A is the Laplacian operator L. We denote

by K the operator (−L)−1 from H−1(Ω) into E and we consider it as a

compact operator on H in a view of Sobolev’s imbeding theorems.

Given α ∈ L
n
2 (Ω) one can consider the eigenvalue problem

(3.2)
−Lv = ναv in Ω,

v = 0 on ∂Ω.

It is well known([6]) that if α > 0 in a set of positive measure, then the

positive number ν for which (3.2) has a nontrivial solution that is a term of a

sequence ν1(α), ν2(α), · · · , νj(α), · · · diverging to +∞. Since each eigenvalue

νj has finite multiplicity, we can repeat it in the sequence as many times as

its multiplicity.

We consider the nonlinear Lapacian differential equation

(3.3) Lu + bu+ − au− = h(x) in H

Lemma 3.2. Assume a < λ1 and b ≤ λk for a given integer k > 2. Let

h(x) = φ1 + t2φ2 ∈ IntD1. Then if u is a solution of (3.3) which changes

sign in Ω, we have

ν1(α(u)) < 1 < νk−1(α(u)).

Proof. Equation (3.3) has the positive solution up = (b− λ1)−1φ1 + t2(b−
λ2)−1φ2 and a negative solution un = (a−λ1)−1φ1+t2(a−λ2)−1φ2. Writing

(3.3) for u and up and substracting we get:

(3.4) −L(up − u) = b(up − u+) + au−.



A SHARP RESULT FOR A NONLINEAR LAPLACIAN DIFFERENTIAL EQUATION 401

Let us use the notation

α̂ =
b(up − u+) + au−

up − u
.

We have the inequalities:

(3.5) a < α(u) < α̂ < b.

By (3.4), νj(α̂) = 1 for some j and by (3.5) j ∈ {1, 2, · · · , k − 1}. We have

similar computations with un and find a function α̌ such that νj(α̌) = 1 for

some j′ ∈ {1, 2, · · · , k − 1} and

(3.6) a < α̌ < α(u) < b,

where each inequality holds on a subset of positive measure in Ω. By Lemma

3.1, we have

1 = νj(α̂) ≤ νk−1(α̂) < νk−1(α(u)),

ν1(α(u)) < ν1(α̌) ≤ νj′(α̌) = 1,

which proves the lemma. ¤

Theorem 3.3. Let a < λ1, λ2 < b < λ3 and let h ∈ IntD1. Then equation

(3.3) has exactly four nondegenerate solutions.

Proof. The staetment follows from Lemma 3.2 which ensures that any

solution which changes sign is nondegenerate and has local degree −1. Since

we know that the solutions of constant sign only are up and un and they

have local degree 1, by using the equality:

dLS(u−K(bu+ − au−), B(0, r),−Kφ1) = 0

which is proved in [6] for large positive r. By the homotopy invariance prop-

erty of degree, if h ∈ IntD1, then

dLS(u−K(bu+ − au−), B(0, r),−Kh) = 0

for large positive r. This completes the proof. ¤
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