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NEW EXACT TRAVELLING WAVE SOLUTIONS FOR
SOME NONLINEAR EVOLUTION EQUATIONS

Youho Lee*, Jaeyoung An**, and Mihye Lee***

Abstract. In this work, we obtain new solitary wave solutions for
some nonlinear partial differential equations. The Jacobi elliptic
function rational expansion method is used to establish new solitary
wave solutions for the combined KdV-mKdV and Klein-Gordon
equations. The results reveal that Jacobi elliptic function ratio-
nal expansion method is very effective and powerful tool for solving
nonlinear evolution equations arising in mathematical physics.

1. Introduction

Nonlinear wave phenomena appears in various scientific and engineer-
ing fields such as fluid mechanics, plasma physics, optical fibers, biology,
solid state physics, chemical kinematics, chemical physics and so on. In
order to understand better the nonlinear phenomena as well as further
application in the practical life, it is important to seek their more exact
travelling wave solutions. Many methods are used to obtain travelling
solitary wave solutions to nonlinear partial differential equations (PDEs)
such as tanh method [4, 7], sine-cosine method [2], variational iteration
method [6], exp-function method [1, 9] and so on.

However, practically there is no unified method that can be used
to handle all types of nonlinear partial differential equations. Another
important method used to obtain exact solutions of nonlinear partial
differential equation is the Jacobi elliptic function rational expansion
method. One of the most effective straightforward method to construct
exact solutions of PDEs is the Jacobi elliptic function rational expansion
method [10]. The extended Jacobi elliptic function rational expansion
method is more powerful than the method in [5]. The different Jacobi
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function expansion may lead to new Jacobi doubly periodic wave solu-
tions, triangular periodic solutions and soliton solutions.

The KdV and mKdV equations are most popular soliton equations
and have been extensively investigated. Consider the combined KdV-
mKdV equation

ut + (α + βu)uux + uxxx = 0,(1.1)

where α and β are some arbitrary constants. This equation may describe
the wave propagation of a bound particle, a sound wave and a thermal
pulse [8]. The improved sub-ODE method is developed to obtain some
exact travelling wave solutions to the combined KdV and mKdV equa-
tion in [11].

Next we consider Klein-Gordon equation of the form

utt − uxx − u + u3 = 0(1.2)

The Klein-Gordon equation plays an important role in mathematical
physics. The equation has attracted much attention in studying soli-
tons in condensed matter physics,interaction of solitons in a collisionless
plasma, and the recurrence of initial states [3]. In this paper, we use
the Jacobi elliptic function rational expansion method with symbolic
computation to special equations (1.1) and (1.2) for constructing their
new Jacobi doubly periodic wave solutions. It is shown that soliton and
triangular solutions can be established as the limits of the Jacobi doubly
periodic wave solutions.

2. The Jacobi elliptic function rational expansion method
and its algorithm

Step 1. Consider a given nonlinear PDE in two variables

P (u, ut, ux, uxx, utt, ...) = 0.(2.1)

we make the transformation

u(x, t) = u(ξ), ξ = kx− ωt,(2.2)

where k and w are the wave number and wave speed respectively, we
can rewrite Eq.(2.1) in the following nonlinear ODE:

Q(u,−ωu′, ku′, k2u′′, ω2u′′, ...) = 0.(2.3)
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Step 2. By the Jacobi elliptic function rational expansion method, u(ξ)
can be expressed as a finite series of Jacobi elliptic function

u(ξ) = a0 +
n∑

i=1

sn(i−1)(ξ)(aisn(ξ) + bicn(ξ))
(µsn(ξ) + 1)i

,(2.4)

where ai(i = 0, 1, · · · , n), bi(i = 1, 2, · · · , n) are constants to be deter-
mined later. Here sn(ξ), cn(ξ) and dn(ξ) are Jacobi elliptic functions.
They are double periodic and possess properties of triangular functions

cn2(ξ) + sn2(ξ) = dn2(ξ) + m2 sn2(ξ) = 1,(2.5)

sn′(ξ) = cn(ξ) dn(ξ)

cn′(ξ) = − sn(ξ) dn(ξ)

dn′(ξ) = −m2sn(ξ)cn(ξ),

(2.6)

where m (0 < m < 1) is the modulus. When m → 1, Jacobi elliptic
functions degenerate to the hyperbolic functions, ie,

lim
m→1

sn(ξ) = tanh(ξ), lim
m→1

cn(ξ) = sech(ξ), lim
m→1

dn(ξ) = sech(ξ).

When m → 0, Jacobi elliptic functions degenerate to the triangular
functions, ie,

lim
m→0

sn(ξ) = sin(ξ), lim
m→0

cn(ξ) = cos(ξ), lim
m→0

dn(ξ) = 1.

Step 3. We define a polynomial degree function as D(u(ξ)) = n, thus
we have

D (up(ξ)) = np, D

((
dsu(ξ)

dξs

)q)
= q(n + s), p, q = 0, 1, 2, · · · .

Therefore, we can determine the parameter n by balancing the highest
order linear term with the nonlinear term in Eq. (2.3). ( If n is not a
positive integer, then we first make the transformation u = vn, and then
perform the third step again.)

Step 4. Substitute (2.4) into (2.3) along with (2.5) and (2.6), and set
all coefficients of sni(ξ) cnj(ξ) (i = 0, 1, 2, · · · , j = 1, 2) to zero. We get
a set of algebraic equations with respect to the unknowns k, ω, µ, ai(i =
0, 1, 2 · · · , n) and bi(i = 1, 2, · · · , n).

Step 5. Solving the systems of algebraic equations using Maple we
can obtain the explicit expressions for k, ω, µ, ai(i = 0, 1, 2 · · · , n) and
bi(i = 1, 2, · · · , n) and substituting these values in (2.4) we can get
double periodic solutions with Jacobi elliptic functions for equation (2.1).
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3. Solutions to nonlinear PDEs

3.1. Wave solutions to KdV-mKdV equation

We now proceed to apply the method as outlined in previous sec-
tion to formally derive distinct exact travelling wave solutions to the
nonlinear KdV-mKdV equation (1.1).

The famous combined KdV-mKdV equation is

ut + (α + βu)uux + uxxx = 0.(3.1)

To look for the travelling wave solution of Eq.(3.1), we make transfor-
mation u(x, t) = u(ξ), ξ = x− ωt, and change Eq.(3.1) into the form

−ωu′ + (α + βu)uu′ + u′′′ = 0.(3.2)

According to Step 3, we have n=1 and assume that Eq.(3.2) has the
solution

u(ξ) = a0 +
a1sn(ξ) + b1cn(ξ)

µsn(ξ) + 1
.(3.3)

With the aid of Maple, substituting (3.3) into (3.2) along with Eqs.
(2.5) and (2.6), yields a set of algebraic equations for sni(ξ) cnj(ξ)(i =
0, 1, 2, · · · , j = 1, 2). Setting the coefficients of sni(ξ) cnj(ξ) to zero, we
obtain a set algebraic equations with respect to the unknowns a0, a1, b1, ω
and µ. Solving the system of algebraic equations using Maple gives the
following set of nontrivial solutions:

{
a0 = ±6m2µ + 6µ± αK1 − 12µ3

2βK1
, a1 = ±K1,

b1 = 0, ω = K2/4β(µ2m2 + µ2 − µ4 −m2), µ = µ
}(3.4)

where K1 =
√
−6m2−6µ2m2−6µ2+6µ4

β ,K2 = 2µ2m4β−20µ2m2β+4µ4m2β+
2µ2β + 4µ4β − µ2m2α2 − µ2α2 + µ4α2 + 4m4β + 4m2β + m2α2

{
a0 = − α

2β
, a1 = 0, b1 = ±m

√
6
β

,

ω = (−α2 − 4β + 8m2β)/4β, µ = 0
}

,

(3.5)

{
a0 = − α

2β
, a1 = ±m

√
− 3

2β
, b1 = ±m

√
3
2β

,

ω = (−α2 − 4β + 2m2β)/4β, µ = 0
}

,

(3.6)
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{
a0 = − α

2β
, a1 = 0, b1 = ±

√
3m2 − 3

2β
,

ω = (−α2 + 2β + 2m2β)/4β, µ = ±1
}

,

(3.7)

{
a0 = −(±K3α− 3µ3 + 3µ)/2K3β, a1 = ±K3,

b1 = ±m

√
−3µ2 − 3m2

2β
, ω =

K4

4β(−µ2 + m2)
, µ = µ

}(3.8)

where K3 =
√
−3m2−3µ2m2−3µ2+3µ4

2β ,K4 = 4µ2m2β − 2µ2β + µ2α2 −
4m2β −m2α2 + 2m4β

{
a0 = (±2K5α± 15i)/±4βK5, a1 = ±K5,

b1 = ±1
2

√
3 + 12m2

2β
, ω =

K6

4β(4m2 + 1)
, µ = ±1

2
i
}(3.9)

where K5 = 1
4

√
−15+60m2

2β ,K6 = −20m2β + 8m4β + 2β − 4m2α2 − α2.

From Eq.(3.3) and (3.4),we obtain a Jacobi doubly periodic wave
solution

u1(x, t) =± 6µ(m2 + 1)± αK1 − 12µ3

2βK1

± K1 · sn(x− ωt)
µ · sn(x− ωt) + 1

(3.10)

where K1 and ω are defined as in Eq. (3.4). As m → 1, this solution
degenerates to the following soliton solution

u11(x, t) = ±12µ± αK11 − 12µ3

2βK11
± K11 · tanh(x− ωt)

µ · tanh(x− ωt) + 1
(3.11)

where K11 =
√
−6(µ4−2µ2+1)

β , ω = K21
−4β(2µ2−µ4−1)

and K21 = −16µ2β +
8µ4β − 2µ2α2 + µ4α2 + 8β + α2.

When m → 0, the solution (3.10) degenerates to a triangular periodic
solution of the form

u10(x, t) = ±12µ± αK10 − 12µ3

2βK10
± K10 · sin(x− ωt)

µ · sin(x− ωt) + 1
(3.12)
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where K10 =
√
−−6µ2+6µ4

β ,ω10 = K20
4β(µ2−µ4)

and K20 = 2µ2β + 4µ4β −
µ2α2 + µ4α2.

From Eq.(3.3) and Eqs.(3.5)-(3.9),we obtain the following sn(ξ) and
cn(ξ) rational formal doubly periodic wave solutions

u2(x, t) = − α

2β
±m

√
6
β
· cn(x− ωt),(3.13)

where ω defined as in Eq. (3.5),

u3(x, t) = − α

2β
±m

√
− 3

2β
· sn(x− ωt)

±m

√
3
2β

· cn(x− ωt),
(3.14)

where ω defined as in Eq. (3.6),

u4(x, t) = − α

2β
±

√
3m2−3

2β · cn(x− ωt)

±sn(x− ωt) + 1
,(3.15)

where ω defined as in Eq. (3.7)

u5(x, t) =− ±K3α− 3µ3 + 3µ

2K3β

+
±K3 · sn(x− ωt)±m

√
−3µ2−3m2

2β · cn(x− ωt)

µ · sn(x− ωt) + 1
,

(3.16)

where ω defined as in Eq. (3.8),

u6(x, t) =
±2K5α± 15i

4βK5

+
±K5 · sn(x− ωt)± 1

2

√
3+12m2

2β · cn(x− ωt)

±1
2 i · sn(x− ωt) + 1

,

(3.17)

where ω defined as in Eq. (3.9).
As m → 1, the solutions (3.13) and (3.14) degenerate to the following

soliton solutions

u21(x, t) = − α

2β
±

√
− 6

β
· sech

(
x− 4β − α2

4β
t

)
.(3.18)
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and

u31(x, t) =− α

2β
±

√
− 3

2β
· tanh

(
x− −2β − α2

4β
t

)

±
√

3
2β

· sech
(

x− −2β − α2

4β
t

)(3.19)

respectively. When m → 0 the solution (3.15) degenerates to a tri-
angular periodic solution of the form

u40(x, t) = − α

2β
±

√
− 3

2β · cos(x− ωt)

±sin(x− ωt) + 1
, where ω =

−α2 + β

4β
.

As m → 1, the solutions (3.16) and (3.17) degenerate to the following
soliton solutions

u51(x, t) = −±K31α− 3µ3 + 3µ

2K31β

+
±K31 · tanh(x− ωt)±

√
3−3µ2

2β · sech(x− ωt)

µ · tanh(x− ωt) + 1

where K31 =
√
−3−6µ2+3µ4

2β ,ω = K41
4β(−µ2+1)

and K41 = 2µ2β + µ2α2

−2β − α2.

u61(x, t) =
±2K51α± 15i

4βK51
+
±K51 · tanh(x− ωt)± 1

2

√
15
2β · sech(x− ωt)

±1
2 i · tanh(x− ωt) + 1

,

where K51 = 1
4

√
− 75

2β , ω = K61
20β and K61 = −10β − 5α2.

Also when m → 0 the solutions (3.16) and (3.17) degenerate to tri-
angular periodic solutions of the form

u50(x, t) = −K30α− 3µ3 + 3µ

2K30β
+
±K30 · sin(x− ωt)
µ · sin(x− ωt) + 1

,

where K30 =
√

−3µ2+3µ4

2β ,ω = K40
−4µ2β

and K40 = −2µ2β + µ2α2, and

u60(x, t) =
±2K50α± 15i

4βK50
+
±K50 · sin(x− ωt)± 1

2

√
3
2β · cos(x− ωt)

±1
2 i · sin(x− ωt) + 1

,

where K50 = 1
4

√
− 15

2β , ω = K60
4β and K60 = 2β − α2 respectively.
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3.2. Wave solutions to Klein-Gordon equation

Consider the Klein-Gordon equation

utt − uxx − u + u3 = 0.(3.20)

To find the travelling wave solutions of Eq.(3.20), we consider the trans-
formation u(x, t) = u(ξ), ξ = x− ωt, where ω is a constant to be deter-
mined later, and Eq.(3.20) reduces to

(ω2 − 1)u′′ − u + u3 = 0.(3.21)

According to Step 3, by balancing the highest order derivative term u′′
with the nonlinear term u3 in (3.21), we obtain n = 1 and thus suppose
that (3.21) has the solution in the form

u(ξ) = a0 +
a1sn(ξ) + b1cn(ξ)

µsn(ξ) + 1
.(3.22)

With the aid of Maple, substituting (3.22) into (3.21) along with Eqs.
(2.5) and (2.6), yields a set of algebraic equations for sni(ξ) cnj(ξ)(i =
0, 1, 2, · · · , j = 1, 2). Setting the coefficients of sni(ξ) cnj(ξ) to zero, we
obtain a set algebraic equations with respect to the unknowns a0, a1, b1, ω
and µ. Solving the system of algebraic equations using Maple gives the
following set of nontrivial solutions:

{
a0 = 0, a1 = ±m

√
2

1 + m2
,

b1 = 0, ω = ±m

√
1

1 + m2
, µ = 0

}
,

(3.23)

{
a0 = ±(m− 1)

√
1
C1

, a1 = ±2(m− 1)
√

m

C1
,

b1 = 0, ω = ±
√

C1 + 2
C1

, µ = ±C1

√
1
C1

√
m

C1

}(3.24)

where C1 = m2 + 6m + 1.

{
a0 = ±(m + 1)

√
1
C2

, a1 = ±2(m + 1)
√
−m

C2
,

b1 = 0, ω = ±
√

C2 + 2
C2

, µ = ±C2

√
1
C2

√
−m

C2

}(3.25)

where C2 = m2 − 6m + 1,
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{
a0 = 0, a1 = 0, b1 = ±m

√
2

2m2 − 1
,

ω = ±m

√
2

2m2 − 1
, µ = 0

}
,

(3.26)

{
a0 = 0, a1 = ±m

√
− 1

m2 − 2
,

b1 = ±m

√
1

m2 − 2
, ω = ±m

√
1

m2 − 2
, µ = 0

}
,

(3.27)

{
a0 = 0, a1 = 0, b1 = ±

√
m2 − 1
m2 + 1

,

ω = ±
√

m2 + 3
m2 + 1

, µ = ±1
}

.

(3.28)

From Eqs.(3.22) and (3.23),we obtain a Jacobi doubly periodic wave
solution

u1(x, t) = ±m

√
2

1 + m2
· sn

(
x±m

√
1

1 + m2
t

)
.(3.29)

As m → 1, the solution (3.29) degenerates to a following soliton solution

u11(x, t) = ±tanh
(

x−
√

1
2
t

)
.

From Eqs.(3.22) and (3.24),we obtain a Jacobi doubly periodic wave
solution

u2(x, t) = ±(m− 1)
√

1
C1

+
±2(m− 1)

√
m
C1
· sn

(
x±

√
C1+2

C1
t
)

±C1

√
1

C1

√
m
C1
· sn

(
x±

√
C1+2

C1
t
)

+ 1
.

From Eqs.(3.22) and (3.25),we obtain a Jacobi doubly periodic wave
solution

u3(x, t) =± (m + 1)
√

1
C2

+
±2(m + 1)

√
− m

C2
· sn

(
x±

√
C2+2

C2
t
)

±C2

√
1

C2

√
− m

C2
· sn

(
x±

√
C2+2

C2
t
)

+ 1
.

(3.30)
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As m → 1, the solution (3.30) degenerates to a following soliton solution

u31(x, t) = ±i +
±2 tanh

(
x−

√
1
2 t

)

±i · tanh
(
x−

√
1
2 t

)
+ 1

.

From Eqs.(3.22) and (3.26),we obtain a Jacobi doubly periodic wave
solution

u4(x, t) = ±m

√
2

2m2 − 1
· cn

(
x±m

√
2

2m2 − 1
t

)
.(3.31)

As m → 1, the solution (3.31) degenerates to a following soliton solution

u41(x, t) = ±
√

2sech(x−
√

2t).

From Eqs.(3.22) and (3.27),we obtain a Jacobi doubly periodic wave
solution

u5(x, t) =±m

√
− 1

m2 − 2
· sn

(
x±m

√
1

m2 − 2
t

)

±m

√
1

m2 − 2
· cn

(
x±m

√
1

m2 − 2
t

)
.

(3.32)

As m → 1, this solution (3.32) degenerates to a following soliton
solution

u51(x, t) = ± tanh(x− it)± i · sech(x− it).

From Eqs.(3.22) and (3.28), we obtain the following sn(ξ) and cn(ξ)
rational formal doubly periodic wave solutions

u6(x, t) =
±

√
m2−1
m2+1

· cn
(
x±

√
m2+3
m2+1

t
)

±sn
(
x±

√
m2+3
m2+1

t
)

+ 1
.(3.33)

As m → 1, the solution (3.33) do not degenerate to the soliton solution.
But when m → 0, it degenerates to a triangular periodic solution of the
form

u60(x, t) =
±icos(x±√3t)

±isin(x±√3t) + 1
.

Remark 3.1. Especially, since when m → 1, sn(ξ) → tanh(ξ) and
cn(ξ) → sech(ξ); while m → 0, sn(ξ) → sin(ξ) and cn(ξ) → cos(ξ);

thus it is easy to see that the present method is used to obtain Jacobi
doubly periodic wave solutions, triangular periodic solutions and soliton
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solutions. Therefore, it is easy to see that the solutions derived from the
present method include the results of the sine-cosine method.

4. Conclusion

Based on the Jacobi elliptic function rational expansion method and
computerized symbolic computation, we have obtained new doubly pe-
riodic wave solutions of combined KdV-mKdV and Klein-Gordon equa-
tions. When the modulus m → 1 and m → 0, some of the obtained
solutions degenerate solitary wave and trigonometric function solutions
respectively. The result reveals that the Jacobi elliptic function rational
expansion method is a promising tool since it can provide a variety of
new solutions of distinct physical structures when compared with exist-
ing methods.
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