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Abstract. By using general means, some oscillation criteria for second order nonlinear
elliptic differential equation with damping

NX
i,j=1

Di[aij(x)Djy] +

NX
i=1

bi(x)Diy + p(x)f(y) = 0

are obtained. These criteria are of a high degree of generality and extend the oscillation

theorems for second order linear ordinary differential equations due to Kamenev, Philos

and Wong.

1. Introduction

In this paper, we consider the oscillatory behavior of second order nonlinear
elliptic differential equation with damping

(1.1)
N∑

i,j=1

Di[aij(x)Djy] +
N∑

i=1

bi(x)Diy + p(x)f(y) = 0

in Ω(a), where N ≥ 2, x = (x1, · · · , xN ) ∈ RN , |x| = [
∑N

i=1 x2
i ]

1/2, Di = ∂/∂xi for
all i, and Ω(a) = {x ∈ RN : |x| ≥ a} for some a > 0.

Throughout this paper we shall assume that the following conditions hold.

(A1) A = (aij)N×N is a real symmetric positive definite matrix function with
aij ∈ C1+µ

loc (Ω(a),R) for all i, j, µ ∈ (0, 1).

Denote by λmax(x) the largest eigenvalue of the matrix A. There exists a function
λ ∈ C([a,∞),R+) such that

λ(r) ≥ max
|x|=r

λmax(x) for r ≥ a;
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(A2) p ∈ Cµ
loc(Ω(a),R) and f ∈ C(R,R)∪C1(R−{0},R), f ′(y) ≥ k > 0, yf(y) > 0

for y 6= 0;

(A3) bi ∈ C1+µ
loc (Ω(a),R) for all i.

By a solution of Eq.(1.1) we mean a function y ∈ C2+µ
loc (Ω), which satisfies Eq.(1.1)

almost everywhere on Ω. Regarding the question of existence of solutions of Eq.(1.1)
we refer the reader to monograph [1]. A nontrivial solution y(x) of Eq.(1.1) is called
oscillatory if the set {x ∈ Ω(a) : y(x) = 0 } is unbounded; otherwise it is said to be
nonoscillatory. Eq.(1.1) is oscillatory if all its solutions are oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient
conditions for the oscillation for different classes of second order elliptic differential
equations. In the absence of damping, many results are obtained for the particular
cases of Eq.(1.1) such as the semilinear elliptic differential equation

(1.2)
N∑

i,j=1

Di[aij(x)Djy] + p(x)f(y) = 0.

In 1980, Noussair and Swanson [3] first extended the well-known Wintner The-
orem [6] to Eq.(1.2) based on N−dimensional vector partial Riccati type transfor-
mation

(1.3) w(x) = − α(|x|)
f(y(x))

(A∇y)(x),

where α ∈ C2(0,∞) is an arbitrary positive function, ∇y denotes the gradient of y.
The survey paper by Swanson [5] contains a complete bibliography up to 1979.

Very recently, Xu [8]-[10] and Zhang et al [11] employed the technique of Noussair
and Swanson [3] and obtained several oscillation results for Eq.(1.2). However, their
results cannot be applied to the nonlinear damped elliptic differential equation (1.1).

Motivated by the work of [3], [4], [7], in this paper we shall establish, by using
a generalized Riccati technique [3] and the general means [4], [7], some oscillation
criteria for Eq.(1.1). These criteria are of a high degree of generality and extend
the oscillation theorems for second order linear ordinary differential equations due
to Kamenev [2], Philos [4] and Wong [7]. Our methodology is somewhat different
from that of the previous authors. We believe that our approach is simpler and also
provides a more unified account of Kamenev-type oscillation theorems.

2. Main results

First of all, we introduce the general means [4], [7]. Let

D = {(r, s) : r ≥ s ≥ a}, and D0 = {(r, s) : r > s ≥ a}.
We say that the function H ∈ C(D,R) belongs to the class = (written H ∈ =), if

(H1) H(r, r) = 0 for r ≥ a, H(r, s) > 0 on D0;
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(H2) H has a continuous and nonpositive partial derivative in D0 with respect to
the second variable;

(H3) there exists a function h ∈ C(D,R) such that

− ∂

∂s
H(r, s) = h(r, s)H(r, s).

Let ρ ∈ C([a,∞),R+), κ ∈ C([a,∞),R), we now define an integral operator Xρ
τ

(see [7]) in terms of H(r, s) and ρ(s) as

(2.1) Xρ
τ (κ; r) =

∫ r

τ

H(r, s)κ(s)ρ(s)ds, r > τ ≥ a.

Motivated by the work of Noussair and Swanson [3], we apply a generalized
Riccati transformation which is different from (1.3), that is

(2.2) W (x) =
1

f(y)
(A∇y)(x) +

1
2k

B,

where B = (b1(x), · · · , bN (x))T .
The key point to note here is that the term (1/2k)B appearing in (2.2) is very

important. Without this term, our method can’t be applied to Eq.(1.1) ( cf [3],
[8]-[11] ).

The following Lemma is a modified version of Lemma 1 in [3], and will be useful
for establishing oscillation criteria for Eq.(1.1).

Lemma 2.1. Let y(x) be a nonoscillatory of Eq.(1.1), then the N -dimensional
vector function W (x) given by (2.2) satisfies the generalized Riccati inequality

(2.3) div W(x) ≤ −kWTA−1W − p(x) +
1
4k

BTA−1B +
1
2k

N∑

i=1

Dibi.

Proof. Differentiation of the i-th component of (2.2) with respect to xi gives

DiWi(x) = − f ′(y)
f2(y)

Diy

(
N∑

i=1

AijDjy

)
+

1
f(y)

Di




N∑

j=1

AijDjy


 +

1
2k

Dibi,

for i. Summation over i and use of Eq.(1.1) and (2.2) lead to

div W (x) = − f ′(y)
f2(y)

(∇y)T A∇y − 1
f(y)

[ p(x)f(y) + BT∇y ] +
1
2k

N∑

i=1

Dibi

≤ −k

[
W − 1

2k
B

]T

A−1

[
W − 1

2k
B

]
− p(x)

−BT A−1

[
W − 1

2k
B

]
+

1
2k

N∑

i=1

Dibi
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= −kWT A−1W − p(x) +
1
4k

BT A−1B +
1
2k

N∑

i=1

Dibi.

This completes the proof. ¤
For simplicity, we always assume that the function H ∈ = and the integral

operator Xρ
τ defined by (2.1). In addition, we define the functions g and P as

following:

g(r) =
kr1−N

ωNλ(r)
, P (r) =

∫

Sr

[
p(x)− 1

4k
BT A−1B − 1

2k

N∑

i=1

Dibi

]
dσ,

where Sr = {x ∈ RN : |x| = r} for r > 0, σ denotes the measure on Sr and ωN

denotes the surface of the unit sphere in RN , i.e., ωN = 2πN/2/Γ(N/2).

Theorem 2.1. Suppose that there exist a function ρ ∈ C1([a,∞),R+) such that

(2.4) lim sup
r→∞

1
H(r, a)

Xρ
a

(
P − 1

4g

[
h− ρ′

ρ

]2
)

= ∞.

Then Eq.(1.1) is oscillatory.

Proof. Let y(x) be a nonoscillatory solution of Eq.(1.1). Without loss of generality,
we may assume that y(x) > 0 for all x ∈ Ω(a). By Lemma 2.1, the generalized
Riccati inequality (2.3) holds in Ω(a). Since λ−1(x) is the smallest eigenvalue of
A−1, then

(2.5) (WT A−1W )(x) ≥ λ−1(x)|W (x)|2 ≥ λ−1(|x|)|W (x)|2.
Inequalities (2.3) and (2.5) imply that

(2.6) div W (x) ≤ − k

λ(|x|) |W (x)|2 − p(x) +
1
4k

BT A−1B +
1
2k

N∑

i=1

Dibi.

Define

(2.7) Z(r) =
∫

Sr

W (x) · ν(x)dσ,

where ν(x) = x/|x|, |x| 6= 0, denotes the outward unit normal to Sr, r = |x|. Using
Green’s formula in (2.7), and in view of (2.6), we get

(2.8) Z ′(r) =
∫

Sr

divW (x) dσ ≤ −P (r)− k

λ(r)

∫

Sr

|W (x)|2 dσ.

By the Schwarz inequality, we have
∫

Sr

|W (x)|2 dσ ≥ r1−N

ωN

[∫

Sr

W (x) · υ(x) dσ

]2

.
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Thus, by (2.8), we have

(2.9) Z ′(r) ≤ −P (r)− g(r)Z2(r).

Applying the integral operator Xρ
τ (τ ≥ a) to (2.9), we obtain

(2.10) Xρ
τ

([
h− ρ′

ρ

]
Z

)
+ Xρ

τ

(
gZ2

)
+ Xρ

τ (P ) ≤ H(r, τ)ρ(τ)Z(τ).

Completing squares of Z in (2.10) yields

Xρ
τ

(
g

[
Z +

1
2g

(
h− ρ′

ρ

)]2
)

+ Xρ
τ

(
P − 1

4g

[
h− ρ′

ρ

]2
)

(2.11)

≤ H(r, τ)ρ(τ)Z(τ).

Set τ = a and divide (2.11) through by H(r, a). Note that the first term is nonneg-
ative, so

(2.12)
1

H(r, a)
Xρ

a

(
P − 1

4g

[
h− ρ′

ρ

]2
)
≤ ρ(a)Z(a).

Take limsup in (2.12) as r → ∞. Condition (2.4) gives a desired contradiction in
(2.12). This completes the proof. ¤

The following Theorem 2.2 treats the case when it is not possible to verify easily
condition (2.4).

Theorem 2.2. Suppose that there exist functions ρ ∈ C1([a,∞),R+), ϕi ∈
C([a,∞),R), i = 1, 2, such that for all τ ≥ a

(2.13) lim sup
r→∞

1
H(r, τ)

Xρ
τ (P ) ≥ ϕ2(τ)

and

(2.14) lim sup
r→∞

1
H(r, τ)

Xρ
τ

(
1
g

[
h− ρ′

ρ

]2
)
≤ ϕ1(τ),

where ϕ1 and ϕ2 satisfy

(2.15) lim inf
r→∞

1
H(r, τ)

Xρ
τ

(
g

ρ2

[
ϕ2 − 1

4
ϕ1

]2

+

)
= ∞,

where [ϕ(r)]+ = max{ϕ(r), 0}. Then Eq.(1.1) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.1 to get (2.10) and (2.11). Then,
by (2.11), we have, for all r > τ ≥ a

1
H(r, τ)

Xρ
τ (P )− 1

4
1

H(r, τ)
Xρ

τ

(
1
g

[
h− ρ′

ρ

]2
)
≤ ρ(τ)Z(τ).

Taking limsup in the above inequality as r → ∞ and applying (2.13) and (2.14),
we obtain

ϕ2(τ)− 1
4
ϕ1(τ) ≤ ρ(τ)Z(τ),

from which it follows that

(2.16)
1

H(r, τ)
Xρ

τ

(
g

ρ2

[
ϕ2 − 1

4
ϕ1

]2

+

)
≤ 1

H(r, τ)
Xρ

τ (gZ2).

On the other hand, by (2.10)

1
H(r, τ)

Xρ
τ

([
h− ρ′

ρ

]
Z

)
+

1
H(r, τ)

Xρ
τ (gZ2) ≤ ρ(τ)Z(τ)− 1

H(r, τ)
Xρ

τ (P ).

Thus, by (2.13)

lim inf
r→∞

{
1

H(r, τ)
Xρ

τ

([
h− ρ′

ρ

]
Z

)
+

1
H(r, τ)

Xρ
τ (gZ2)

}
(2.17)

≤ ρ(τ)Z(τ)− ϕ2(τ) ≤ C0,

where C0 is a constant.
Now, we claim that

(2.18) lim inf
r→∞

1
H(r, τ)

Xρ
τ (gZ2) < ∞.

If (2.18) does not hold, then there exists a sequence {rj}∞j=1 ∈ [a,∞) with
limj→∞ rj = ∞ such that

(2.19) lim
j→∞

1
H(rj , τ)

Xρ
τ (gZ2) = ∞.

Hence, by (2.17), for j large enough, we have

1
H(rj , τ)

Xρ
τ

([
h− ρ′

ρ

]
Z

)
+

1
H(rj , τ)

Xρ
τ (gZ2) ≤ C0 + 1.

So, by (2.19), for j large enough and ε > 1, we have

Xρ
τ

([
h− ρ′

ρ

]
Z

)

Xρ
τ (gZ2)

< −1
ε
,
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that is

(2.20) Xρ
τ (gZ2) ≤ ε

∣∣∣∣Xρ
τ

([
h− ρ′

ρ

]
Z

)∣∣∣∣ .

By the Schwarz inequality, we have

(2.21)
∣∣∣∣Xρ

τ

([
h− ρ′

ρ

]
Z

)∣∣∣∣
2

≤ Xρ
τ (gZ2)Xρ

τ

(
1
g

[
h− ρ′

ρ

]2
)

.

From (2.20) and (2.21), we have

(2.22)
1

H(rj , τ)
Xρ

τ (gZ2) ≤ ε2

H(rj , τ)
Xρ

τ

(
1
g

[
h− ρ′

ρ

]2
)

.

By (2.14), the right-hand side of (2.22) is bounded, which contradicts (2.19). Thus,
(2.18) holds. Hence, by (2.16)

lim inf
r→∞

1
H(r, τ)

Xρ
τ

(
g

ρ2

[
ϕ2 − 1

4
ϕ1

]2

+

)
≤ lim inf

r→∞
1

H(r, τ)
Xρ

τ (gZ2) < ∞.

which contradicts (2.15). ¤

Remak 2.1. Theorems 2.1 and 2.2 are extensions of Wong’s results [7] to Eq.(1.1).

For the case when the substitution (2.7) is modified as

(2.23) U(r) = φ(r)
[∫

Sr

W (x) · ν(x)dσ − 1
2g(r)

φ′(r)
φ(r)

]
,

where φ ∈ C1([a,∞),R+), then we can obtain more sharp oscillation criteria (The-
orem 2.3 and Theorem 2.4) for Eq.(1.1).

Theorem 2.3. Suppose that there exist functions φ ∈ C2([a,∞),R+), ρ ∈
C1([a,∞),R+) such that

(2.24) lim sup
r→∞

1
H(r, a)

Xρ
a

(
Θ− 1

4ψ

[
h− ρ′

ρ

]2
)

= ∞,

where

ψ(r) =
g(r)
φ(r)

, Θ(r) = φ(r)P (r) +
1
2

(
φ′(r)
g(r)

)′
− φ′2(r)

4g(r)φ(r)
.

Then Eq.(1.1) is oscillatory.

Proof. Let y(x) be a nonoscillatory solution of Eq.(1.1). Without loss of generality,
we may assume that y(x) > 0 for all x ∈ Ω(a). By Lemma 2.1, the Riccati inequality



72 Zhiting Xu

(2.3) holds in Ω(a). Then, using Green’s formula in (2.23) and making use of (2.6),
we obtain

U ′(r)(2.25)

=
φ′(r)
φ(r)

U(r) + φ(r)

{∫

Sr

divW (x) dσ − 1
2

[
1

g(r)
φ′(r)
φ(r)

]′}

≤ φ′(r)
φ(r)

U(r)− g(r)φ(r)
[∫

Sr

W (x) · ν(x)dσ

]2

− φ(r)P (r)

−φ(r)
2

[
1

g(r)
φ′(r)
φ(r)

]′

=
φ′(r)
φ(r)

U(r)− ψ(r)
[
U(r) +

φ′(r)
2g(r)

]2

− φ(r)P (r)− φ(r)
2

[
φ′(r)

g(r)φ(r)

]′

= −ψ(r)U2(r)−Θ(r).

Next, proceeding as the proof of Theorem 2.1 we can complete the proof. ¤

Remark 2.2. Theorem 2.3 improves Theorem 1 for Eq.(1.2) in [10].

Evidently, we can establish the following theorem analogous to Theorem 2.2.
The proof is similar to that of Theorem 2.2, and hence omitted.

Theorem 2.4. Suppose that there exist functions φ ∈ C2([a,∞),R+), ρ ∈
C1([a,∞),R+), and ϕi ∈ C([a,∞),R), i = 1, 2, such that for all τ ≥ a

(2.26) lim sup
r→∞

1
H(r, τ)

Xρ
τ (Θ) ≥ ϕ2(τ)

and

(2.27) lim sup
r→∞

1
H(r, τ)

Xρ
τ

(
1
ψ

[
h− ρ′

ρ

]2
)
≤ ϕ1(τ)

where ϕ1 and ϕ2 satisfy

(2.28) lim inf
r→∞

1
H(r, τ)

Xρ
τ

(
ψ

ρ2

[
ϕ2 − 1

4
ϕ1

]2

+

)
= ∞,

where ψ and Θ are defined as Theorem 2.3. Then Eq.(1.1) is oscillatory.

3. Corollaries and examples

In this section, we would like to establish some oscillation criteria for Eq.(1.1)
by properly choosing the weighting functions ρ(s) and φ(s), and also present some
examples that illustrate the obtained results. These examples are new and not
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covered by any of the results in [3], [8]-[11].

Corollary 3.1. Let α > 1, suppose that

(3.1) lim sup
r→∞

G−α(r)
∫ r

a

[G(r)−G(s)]αP (s)ds = ∞,

where G(r) =
∫ r

a
s1−N

λ(s) ds for r ≥ a. Then Eq.(1.1) is oscillatory.

Proof. Let
H(r, s) = [G(r)−G(s)]α, ρ(r) = 1 for r ≥ s ≥ a.

Then

h(r, s) = α[G(r)−G(s)]−1 s1−N

λ(s)
,

∫ r

a

H(r, s)
g(s)

h2(r, s) ds =
ωNα2

k

∫ r

a

[G(r)−G(s)]α−2 s1−N

λ(s)
ds

=
ωN

k

α2

α− 1
[G(r)]α−1.

This implies

lim sup
r→∞

1
H(r, a)

X1
a

(
P − 1

4g

[
h− ρ′

ρ

]2
)

= lim sup
r→∞

{
G−α(r)

∫ r

a

[G(r)−G(s)]αP (s) ds− α2ωN

4k(α− 1)G(r)

}
= ∞.

It follows from Theorem 2.1 that Eq.(1.1) is oscillatory. ¤

Remark 3.1. Corollary 3.1 extends Kamenev Theorem [2] to Eq.(1.1).

Corollary 3.2. Let α > 1, suppose that there exists a function ρ ∈ C1([a,∞),R+)
such that

(3.2)
∫ ∞

a

ρ′2(s)
ρ(s)

ds < ∞

and

(3.3) lim sup
r→∞

1
rα

∫ r

a

(r − s)αρ(s)P (s) ds = ∞.

Then Eq.(1.1) is oscillatory.

Proof. By Theorem 2.1, it is sufficient to show that

lim
r→∞

1
H(r, a)

Xρ
a

([
h− ρ′

ρ

]2
)

< ∞,
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where H(r, s) = (r − s)α, and h(r, s) = α(r − s)−1. Note that

(
h− ρ′

ρ

)2

≤ 2
(

h2 +
ρ′2

ρ2

)
.

Because limr→∞ r−α
∫ r

a
(r− s)α−2 ds = 0. In view of (3.2), and using Lemma in [7],

p 247, property (14), we have

lim
r→∞

r−α

∫ r

a

(r − s)α ρ′2(s)
ρ(s)

ds = 0.

Thus Corollary 3.2 follows from Theorem 2.1. ¤
Similar to the proof of Corollary 3.1, by Theorem 3.3, we have

Corollary 3.3. Let α > 1, suppose that

(3.4) lim sup
r→∞

Q−α(r)
∫ r

a

[Q(r)−Q(s)]αΘ(s) ds = ∞,

where Q(r) =
∫ r

a
ψ(s) ds for r ≥ a. Then Eq.(1.1) is oscillatory.

Remark 3.2. Corollary 3.3 improves Theorem 4 in [3] for Eq.(1.2).

Corollary 3.4. Suppose

(3.5) lim inf
r→∞

φ(r)
∫ ∞

r

P (s) ds >
1
4
,

where φ(r) =
∫ r

a
g(s) ds. Then Eq.(1.1) is oscillatory.

Proof. By (3.5), there exist two numbers b ≥ a and c > 1
4 such that

φ(r)
∫ ∞

r

P (s) ds > c, for r ≥ b.

Let
H(r, s) = [φ(r)− φ(s)]2 and ρ(s) = 1,

then
h(r, s) = 2[φ(r)− φ(s)]−1g(s).

Thus
H(r, s)

[
Θ(s)− 1

4ψ(s)h
2(r, s)

]

= [φ(r)− φ(s)]2φ(s)
[
P (s)− φ′(s)

4φ2(s)

]
− φ(s)φ′(s).

Define
Φ(r) =

∫ ∞

r

P (s) ds.
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Hence, for all r > b ≥ a
∫ r

b

H(r, s)
[
Θ(s)− 1

4ψ(s)
h2(r, s)

]
ds

=
∫ r

b

[φ(r)− φ(s)]2φ(s)d
(
−Φ(s) +

1
4φ(s)

)
−

∫ r

b

φ(s)φ′(s) ds

= [φ(r)− φ(b)]2φ(b)
[
Φ(b)− 1

4φ(b)

]
− 1

2
[φ2(r)− φ2(b)]

+
∫ r

b

[
Φ(s)φ(s)− 1

4

](
−4φ(r) + 3φ(s) +

φ2(r)
φ(s)

)
φ′(s) ds

≥
(

c− 1
4

)[
(−5

2
− ln φ(b))φ2(r) + φ2(r) ln φ(r)

]
− 1

2
φ2(r).

It follows from Theorem 2.3 that Eq.(1.1) is oscillatory. ¤

Remark 3.3. Corollary 3.4 improves Theorem 2.3 in [11] for Eq.(1.2).

Remark 3.4. In Theorems 3.1-3.4, let H(r, s) = (r − s)α and α > 1, we can
establish the Kamenev-type criterion for Eq.(1.1), here we omit the details.

Example 3.1. Consider the equation

(3.6) ∆y +
cos r

r

∂y

∂x1
+

sin r

r

∂y

∂x2
+

1
rδ

(ε + sin r)(y + y3) = 0, r ≥ 1,

where r =
√

x2
1 + x2

2, N = 2, A = I, f(y) = y + y3, δ ≤ 3, and

B =
(

cos r

r
,
sin r

r

)
, p(x) =

1
rδ

(ε + sin r), g(r) =
2π

r
.

By direct calculation we get

P (x) =
∫

Sr

[
p(x)− 1

4k
BT A−1B − 1

2

N∑

i=1

Dibi

]
dσ

=
2π

rδ−1
(ε + sin r)− π

2r
(1 + 2 sin r + 2 cos r).

For Corollary 3.2, let ρ(r) = r−1, if δ ≤ 3,

lim
r→∞

∫ r

a

P (s)ρ(s) ds(3.7)

= 2π lim
r→∞

∫ r

a

[
1

sδ−2
(ε + sin s)− 1

4s2
(1 + 2 cos s + 2 sin s)

]
ds = ∞.
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Clearly, (3.7) implies (3.3) for any α > 1. Thus Eq.(3.6) is oscillatory for ε > 0 and
δ ≤ 3.

Example 3.2. Consider the damping elliptic equation

(3.8)
∂

∂x1

(
1
r

∂y

∂x1

)
+

∂

∂x2

(
1
r

∂y

∂x2

)
+

1
r

∂y

∂x1
+

1
r2

(
y + y3

)
= 0, r > 1,

where r =
√

x2
1 + x2

2, N = 2, A(x) = diag(r−1, r−1), B = (r−1, 0), p(x) = r−2.
Since

λ(r) =
1
r
, g(r) =

1
2π

, P (x) =
2π

r
− π

2r2
.

Now, for Theorem 2.4, let φ(r) = r−1, ρ(r) = 1 and H(r, s) = (r − s)2 for
r ≥ s ≥ 1, we have

h(r, s) = 2(r − s)−1, ψ(r) =
r

2π
, Θ(r) =

π

r2

(
2− 1

2r

)
.

Thus

lim sup
r→∞

1
H(r, s)

Xρ
τ (Θ) = lim

r→∞
1
r2

∫ r

τ

(r − s)2
π

s2

(
2− 1

2s

)
ds =

2π

τ
, τ ≥ 1,

and

lim
r→∞

1
H(r, a)

Xρ
τ

(
1
ψ

[
h− ρ′

ρ

]2
)

= lim
r→∞

8π

r2

∫ r

τ

1
s

ds = 0.

Choosing ϕ1(r) = 0 and ϕ2(r) = 2πr−1, then

lim
t→∞

1
H(r, a)

Xρ
τ

(
ψ

ρ2

[
ϕ2 − 1

4
ϕ1

]2

+

)
= lim

r→∞
2π

r2

∫ r

a

(r − s)2
1
s

ds = ∞.

Hence, Theorem 3.4 implies that Eq.(3.8) is oscillatory.

Remark 3.5. The results of this paper are presented in the form of a high degree of
generality and thus they give possibilities of deriving a number of oscillation criteria
with a choice of H(r, s) different from that discussed in the paper. For example, we
may consider

H(r, s) =
[∫ r

s

du

θ(u)

]n−1

, (r, s) ∈ D.

where n > 2 is a constant and θ is a positive continuous function on [a,∞).
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