• Title/Summary/Keyword: non-static

Search Result 1,029, Processing Time 0.032 seconds

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

Non-PDC Static Output Feedback Control for T-S Fuzzy Systems (T-S 퍼지 시스템에 대한 비병렬분산보상 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.496-501
    • /
    • 2016
  • This paper presents a design method of non-parallel distributed compensation (non-PDC) static output feedback controller for continuous- and discrete-time T-S fuzzy systems. The existence condition of static output feedback control law is represented in terms of linear matrix inequalities (LMIs). The proposed sufficient stabilizing condition does not need any transformation matrices and equality constraints and is less conservative than the previous result of [21].

Accurate Non-Quasi-Static Gate-Source Impedance Model of RF MOSFETs

  • Lee, Hyun-Jun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • An improved non-quasi-static gate-source impedance model including a parallel RC block for short-channel MOSFETs is developed to simulate RF MOSFET input characteristics accurately in the wide range of high frequency. The non-quasi-static model parameters are accurately determined using the physical input equivalent circuit. This improved model results in much better agreements between the measured and modelled input impedance than a simple one with a non-quasi-static resistance up to 40GHz, verifying its accuracy.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

Effects of Thoracic Mobility Exercise Program on Pain, Proprioception, and Static Balance Ability in Patients with non-Specific Chronic Low Back Pain

  • Donghwan Park;Kang-Seong Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Objective: The objective of this study was to investigate the effect of the thoracic mobility exercise program on pain, proprioception, and static balance ability in patients with non-specific chronic low back pain. Design: Randomized controlled trial design. Methods: Thirty patients with non-specific chronic low back pain participated in this study. The participants were randomized into the thoracic mobility exercise group (n=15) and the lumbar stabilization exercise group (n=15). Both groups received traditional physical therapy for 30 minutes per session. In addition, the thoracic mobility exercise group and the lumbar stabilization exercise group each exercise 3 times a week for 6 weeks. All participants were measured visual analog scale, proprioception test, and static balance ability before and after the intervention. Results: After 6 weeks of interventions, the thoracic mobility exercise group showed greater improvement in visual analog scale, proprioception test, and static balance ability than the LSE group (p<0.05). Further, the thoracic mobility exercise group had significant Enhancements in all measured variables compared to the baselinetest (p<0.05). However, the lumbar stabilization exercise group had significant improvement only visual analog scale, and static balance ability compared to the baselinetest (p<0.05). Conclusions: Our investigation demonstrates that the thoracic mobility exercise is an effective intervention method for improving pain, proprioception, and static balance ability in patients with non-specific chronic low back pain.

A new CAD-compatible non-quasi-static MOS tansient model (새로운 CAD용 Non-Quasi-Static MOS 과도 전류 모델)

  • 권대한;류윤섭;김기혁;황성우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.31-38
    • /
    • 1997
  • A new CAD-compatible non-quasi-static (NQS) MOS transient model is presented. A new type of weighted residual method, the collcoatin method, is adopted to obtian an approximate ordinary differntial equation from the continuity eqation. Contrasting to the conventional NQS models, the new model can directly include the variatin of the depletion charge and the derived transient current sare expressed with only physically meaningful variables. The new model predicts transient behaviors reasonably well in the calculation including cutoff regions where the depletion charge rapidly changes.

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Classes of exact solutions for several static and dynamic problems of non-uniform beams

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper, an analytical procedure for solving several static and dynamic problems of non-uniform beams is proposed. It is shown that the governing differential equations for several stability, free vibration and static problems of non-uniform beams can be written in the from of a unified self-conjugate differential equation of the second-order. There are two functions in the unified equation, unlike most previous researches dealing with this problem, one of the functions is selected as an arbitrary expression in this paper, while the other one is expressed as a functional relation with the arbitrary function. Using appropriate functional transformation, the self-conjugate equation is reduced to Bessel's equation or to other solvable ordinary differential equations for several cases that are important in engineering practice. Thus, classes of exact solutions of the self-conjugate equation for several static and dynamic problems are derived. Numerical examples demonstrate that the results calculated by the proposed method and solutions are in good agreement with the corresponding experimental data, and the proposed procedure is a simple, efficient and exact method.

Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets (3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정)

  • 김문영;김남일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF