Browse > Article
http://dx.doi.org/10.12989/was.2017.25.6.589

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements  

Kassir, Wafaa (Universite Paris-Est, Modelisation et Simulation Multi-Echelle)
Soize, Christian (Universite Paris-Est, Modelisation et Simulation Multi-Echelle)
Heck, Jean-Vivien (Centre Scientifique et Technique du Batiment (CSTB))
De Oliveira, Fabrice (Centre Scientifique et Technique du Batiment (CSTB))
Publication Information
Wind and Structures / v.25, no.6, 2017 , pp. 589-608 More about this Journal
Abstract
A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.
Keywords
equivalent static wind loads; non-Gaussian unsteady pressure field; polynomial chaos expansion; quasi-static responses; stochastic dynamics; extreme value statistics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Perrin, G., Soize, C., Duhamel, D. and Funfschilling, C. (2012), "Identification of polynomial chaos representations in high dimension from a set of realizations", SIAM J. Sci. Comput., 34(6), A2917-A2945.   DOI
2 Repetto, M.P. and Solari, G. (2004), "Equivalent static wind actions on vertical structures", J. Wind Eng. Industr. Aerodyn., 92(5), 335-357.   DOI
3 Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures. Fundamentals and Applications to Design, 3rd Edition), John Wiley & Sons, New York, U.S.A.
4 Simiu, E. (2015), "Equivalent static wind loads for tall building design", J. Struct. Div., 102(4), 719-737.
5 Soize, C. (1978), "Gust loading factors with nonlinear pressure terms", J. Struct. Div., 104(6), 991-1007.
6 Soize, C. (2017), Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computational Engineering, Springer, New York, U.S.A.
7 Solari, G. (1985), "Mathematical model to predict 3-D wind loading on buildings", J. Eng. Mech., 111(2), 254-276.   DOI
8 Solliec, C. and Mary, J. (1995), "Simultaneous measurements of fluctuating pressures using piezoresistive multichannel transducers as applied to atmospheric wind tunnel tests", J. Wind Eng. Industr. Aerodyn., 56(1), 71-86.   DOI
9 Sun, W., Gu, M. and Zhou, X. (2015), "Universal equivalent static wind loads of fluctuating wind loads on large-span roofs based on POD compensation", Adv. Struct. Eng., 18(9), 1443-1459.   DOI
10 Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Flu. Struct., 13(7), 1069-1095.   DOI
11 Uematsu, Y., Yamada, M., Inoue, A. and Hongo, T. (1997), "Wind loads and wind-induced dynamic behavior of a single-layer latticed dome", J. Wind Eng. Industr. Aerodyn., 66(3), 227-248.   DOI
12 Uematsu, Y., Moteki, T. and Hongo, T. (2008), "Model of wind pressure field on circular flat roofs and its application to load estimation", J. Wind Eng. Industr. Aerodyn., 96(6), 1003-1014.   DOI
13 Vaicaitis, R., Shinozuka, M. and Takeno, M. (1973), "Parametric study of wind loading on structures", J. Struct. Div., 99(3), 453-468.
14 Vaicaitis, R. and Simiu, E. (1977), "Nonlinear pressure terms and along-wind response", J. Struct. Div., 103(4), 903-906.
15 Vickery, B.J. and Danveport, A.G. (1967), "A comparison of theoretical and experimental determination of the response of elastic structures to turbulent flow", Proceedings of the 2nd Conference on Wind Effects on Buildings and Structures, Ottawa, Canada.
16 Vinet, J. and De Oliveira, F. (2011), Etudes Aerodynamiques De Dimensionnement Au Vent Du Stade Velodrome De Marseille : Nouvelles Configurations, EN-CAPE 11.114 C V2, CSTB, Nantes, France.
17 Vinet, J. and De Oliveira, F. (2013), "Etude aerodynamiques de dimensionnement au vent du stade de Nice", EN-CAPE 11.056 C-V1, CSTB, Nantes, France. Rapport confidentiel.
18 Vinet, J., De Oliveira, F., Barre, C., Fayette, E., Consigny, F. and Vondiere, R. (2015), "Wind effects on stadium refurbishment the example of stade velodrome in Marseille, France", Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre, Brazil, June.
19 Yang, Q.S., Chen, B., Wu, Y. and Tamura, Y. (2013), "Wind-induced response and equivalent static wind load of long-span roof structures by combined ritz-proper orthogonal decomposition method", J. Struct. Eng., 139(6), 997-1008.   DOI
20 Yi, J., Zhang, J.W. and Li, Q.S. (2013), "Dynamic characteristics and wind-induced responses of a super-tall building during typhoons", J. Wind Eng. Industr. Aerodyn., 121, 116-130.   DOI
21 Zhang, X. and Yao, M. (2015), "Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges", Wind Struct., 21(4), 407-424.   DOI
22 Zhou, Y., Gu, M. and Xiang, H.F. (1999), "Alongwind static equivalent wind loads and responses of tall buildings. Part I: Unfavorable distributions of static equivalent wind loads", J. Wind Eng. Industr. Aerodyn., 79(1), 135-150.   DOI
23 Zhou, Y., Gu, M. and Xiang, H.F. (1999), "Alongwind static equivalent wind loads and responses of tall buildings. Part II: Effects of mode shapes", J. Wind Eng. Industr. Aerodyn., 79(1-2), 151-158.   DOI
24 Zhou, X. and Gu, M. (2010), "An approximation method for computing the dynamic responses and equivalent static wind loads of large-span roof structures", J. Struct. Stab. Dyn., 10(5), 1141-1165.   DOI
25 Zhi, L., Li, Q.S. and Fang, M. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput.-Aid. Civil Infrastruct. Eng., 31(12), 966-982.   DOI
26 Bietry, J., Delaunay, D. and Conti, E. (1995), "Comparison of full-scale measurement and computation of wind effects on a cable-stayed bridge", J. Wind Eng. Industr. Aerodyn., 57(2-3), 225-235.   DOI
27 Andrews, H. and Patterson, C. (1976), "Singular value decomposition and digital image processing", Trans. Acoust. Spe. Sign. Proc.-IEEE, 24(1), 26-53.   DOI
28 Bienkiewicz, B., Tamura, Y., Ham, H.J., Ueda, H. and Hibi, K. (1995), "Proper orthogonal decomposition and reconstruction of multi-channel roof pressure", J. Wind Eng. Industr. Aerodyn., 54, 369-381.
29 Bietry, J., Simiu, E. and Sacre, C. (1978), "Mean wind profiles and charge of terrain roughness", J. Struct. Div., 104(10), 1585-1593.
30 Blaise, N. and Denoel, V. (2013), "Principal static wind loads", J. Wind Eng. Industr. Aerodyn., 113, 29-39.   DOI
31 CEBTP (Center for Research and Studies for Buildings and Public Works) (1978), Effets Du Vent Sur La Tour Maine-Montparnasse, Comlpementary Report.
32 Blaise, N. and Denoel, V. (2015), "Adjusted equivalent static wind loads for non-gaussian linear static analysis", Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre, Brazil, June.
33 Blaise, N., Canor, T. and Denoel, V. (2016), "Reconstruction of the envelope of non-Gaussian structural responses with principal static wind loads", J. Wind Eng. Industr. Aerodyn., 149, 59-76.   DOI
34 Byrd, R.H., Hribar, M.E. and Nocedal, J. (1999), "An interior point algorithm for large-scale nonlinear programming", SIAM J. Optim., 9(4), 877-900.   DOI
35 Chen, X. and Kareem, A. (2004), "Equivalent static wind loads on buildings : New model", J. Struct. Eng., 130(10), 1425-1435.   DOI
36 Chen, X. and Zhou, N. (2007), "Equivalent static wind loads on low-rise buildings based on full-scale pressure measurements", Eng. Struct., 29(10), 2563-2575.   DOI
37 Cook, N.J. and Mayne, J.R. (1979), "A novel working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Industr. Aerodyn., 4(2), 149-164.   DOI
38 Davenport, A.G. (1961), "The application of statistical concepts of the wind loading of structures", Proceedings of the Institution of Civil Engineers, 19(4), 449-472.   DOI
39 Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34.
40 Davenport A.G. (1995), "How can we simplify and generalize wind loads?", J. Wind Eng. Industr. Aerodyn., 54, 657-669.
41 Fu, J., Xie, Z. and Li, Q.S. (2010), "Closure to equivalent static wind loads on long-span roof structures", J. Struct. Eng., 136(4), 470-471.   DOI
42 Desceliers, C., Ghanem, R. and Soize, C. (2006), "Maximum likelihood estimation of stochastic chaos representations from experimental data", J. Numer. Meth. Eng., 66(6), 978-1001.   DOI
43 Ellingwood, B.R. and Tekie, P.B. (1999), "Wind load statistics for probability-based structural design", J. Struct. Eng., 46(2), 453-463.
44 Flamand, O. De Oliveira, F., Stathopoulos-Vlamis, A. and Papanikolas, P. (2014), "Conditions for occurrence of vortex shedding on a large cable stayed bridge: Full scale data from monitoring system", J. Wind Eng. Industr. Aerodyn., 135, 163-169.   DOI
45 Ghanem, R. and Spanos, P.D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, U.S.A.
46 Gill, P.E., Murray, W. and Wright, M.H. (1981), Practical Optimization, Academic Press, London, U.K.
47 Givens, G.H. and Hoeting, J.A. (2013), Computational Statistics, 2nd Edition, Wiley, New York, U.S.A.
48 Golub, G.H. and Van Loan, C.F. (2013), Matrix Computations, 4th Edition, The Johns Hopkins University Press, Baltimore, U.S.A.
49 Hillewaere, J., Degroote, J., Lombaert, G., Vierendeels, J. and Degrande, G. (2013), "Computational aspects of simulating wind induced ovalling vibrations in silo groups", J. Comput. Appl. Math., 246, 161-173.   DOI
50 Hillewaere, J., Degroote, J., Lombaert, G., Vierendeels, J. and Degrande, G. (2015), "Wind-structure interaction simulations of ovalling vibrations in silo groups", J. Flu. Struct., 59, 328-350.   DOI
51 Irwin, P.A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Industr. Aerodyn., 97(7), 328-334.   DOI
52 Holmes, J.D. (1992), "Optimised peak load distributions", J. Wind Eng. Industr. Aerodyn., 41(1-3), 267-276.   DOI
53 Holmes, J.D. (2002), "Effective static load distributions in wind engineering", J. Wind Eng. Industr. Aerodyn., 90(2), 91-109.   DOI
54 Huang, G. and Chen, X. (2007), "Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements", Eng. Struct., 29(10), 2641-2653.   DOI
55 Kareem, A. (1992), "Dynamic response of high-rise buildings to stochastic wind loads", J. Wind Eng. Industr. Aerodyn., 42(1-3), 1101-1112.   DOI
56 Kasperski, M. and Niemann, H.J. (1988), "On the correlation of dynamic wind loads and structural response of natural-draught cooling towers", J. Wind Eng. Industr. Aerodyn., 30(1-3), 67-75.   DOI
57 Kasperski, M. (1992), "Extreme wind load distributions for linear and nonlinear design", Eng. Struct., 14(1), 27-34.   DOI
58 Gu, M. and Huang, Y. (2015), "Equivalent static wind loads for stability design of large span roof structures", Wind Struct., 20(1), 95-115.   DOI
59 Kasperski, M. and Niemann, H.J. (1992), "The L.R.C (load-response-correlation)-method. A general method of estimating unfavourable wind load. Distributions for linear and non-linear structural behaviour", J. Wind Eng. Industr. Aerodyn., 43(1-3), 1753-1763.   DOI
60 Kassir, W. (2017), A non-Gaussian probabilistic approach for the equivalent static loads of wind effects in structural dynamics from wind tunnel measurements, Ph.D. Dissertation, Universite Paris-Est, France.
61 Kumar, K.S. and Stathopoulos, T. (2000), "Wind loads on low building roofs: A stochastic perspective", J. Struct. Eng., 126(8), 944-956.   DOI
62 Kassir, W., Soize, C., Heck, J.V. and De Oliveira, F. (2017), "A non-Gaussian probabilistic approach for estimating the equivalent static wind loads on structures from unsteady pressure field", Proceedings of the 7th European-African Conference on Wind Engineering, Lige, Belgium, July.
63 Katsumara, A., Tamura, Y. and Nakamura, O. (2007), "Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof", J. Wind Eng. Industr. Aerodyn., 95(9), 1145-1165.   DOI
64 Kree, P. and Soize, C. (1986), Mathematics of Random Phenomena, Reidel, New York, U.S.A., French Version: Mecanique Aleatoire, Dunod, Paris, France, 1983.
65 Liang, S.G., Zou, L.H., Wang, D.H. and Huang, G.Q. (2014), "Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests", Wind Struct., 19(5), 565-583.   DOI
66 Lou,W., Zhang, L., Huang, M.F. and Li, Q.S. (2015), "Multiobjective equivalent static wind loads on complex tall buildings using non-Gaussian peak factors", J. Struct. Eng., 141(11), 04015033.   DOI
67 Lu, C.L., Huang, S.H., Tuan, A.Y., Zhi, L.H. and Su, S. (2016), "Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation", Wind Struct., 23(4), 313-350.   DOI
68 Ohayon, R. and Soize, C. (1998), Structural Acoustic and Vibration, Academic Press, San Diego, London, U.K.
69 Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2017), "An efficient approach to the determination of equivalent static wind loads", J. Flu. Struct., 68, 1-14.   DOI