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Abstract—An improved non-quasi-static gate-source 

impedance model including a parallel RC block for 

short-channel MOSFETs is developed to simulate RF 

MOSFET input characteristics accurately in the wide 

range of high frequency. The non-quasi-static model 

parameters are accurately determined using the 

physical input equivalent circuit. This improved 

model results in much better agreements between the 

measured and modelled input impedance than a 

simple one with a non-quasi-static resistance up to 

40GHz, verifying its accuracy.   

 

Index Terms—MOSFET, CMOS, RF, model, non-

quasi-static, parameter extraction   

I. INTRODUCTION 

Physically, NQS(non-quasi-static) effect in MOSFETs 

is a relaxation-time dependent phenomenon of channel 

charge response by a time-varying input signal [1, 2]. 

The inversion channel region is distributed in the lateral 

direction under the gate oxide [3], and this distributed 

nature results in the channel propagation delay. This non-

quasi-static effect due to the channel delay plays an 

important role in the high frequency region [4].  

In order to model this delay effect, the channel region 

of the MOSFET is represented as an RC distributed 

network that is very complex for IC simulation [3]. In 

order to simplify this complexity, a simple small-signal 

MOSFET model with a single NQS gate-source 

resistance is widely used [3-11], but it is too simple to 

model the distributed channel effect in the wide range of 

high-frequency accurately.  

In particular, it is important to develop the accurate 

gate-source impedance model in the high-frequency 

region because a gate resistance will have strong 

influence on the input impedance and increase the noise 

figure of the transistor.  

Therefore, in this paper, we propose an improved NQS 

gate-source impedance model including a NQS parallel 

RC block to extend the valid frequency limit to 40GHz. 

We also present a new NQS gate-source impedance 

extraction method using the physical input equivalent 

circuit. 

II. NQS MODELING AND PARAMETER 

EXTRACTION 

S-parameters are measured on multi-finger N-

MOSFETs (0.18 µm gate length, 16 gate finger and 5 µm 

unit finger width). An accurate de-embedding procedure 

was carried out to remove pad and interconnection 

parasitics from each measured S-parameters [12]. 

Fig. 1(a) shows a simple small-signal MOSFET model 

[11] with NQS gate-source resistance Rgsi. In this model, 

Rge is the electrode gate resistance, Cgsi is the gate-source 

channel capacitance, Cgso is the overlap gate-source 

capacitance, Cgd is the gate-drain capacitance, Rd is the 

drain resistance, Rs is the source resistance, Cjd is the 

drain junction capacitance, Rbk is the bulk resistance, and 

Cbk is the bulk capacitance.  

In order to know whether this simple model is 
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physically valid, ac current flow in distributed gate oxide 

and channel region is investigated in detail. In Fig. 2, the 

inversion channel region in the saturation region is 

represented by n RC ladder network distributed in the 

lateral direction. The larger ac current will flow in unit 

oxide capacitance of C = Cox/n that is closer to the edge 

of source, because the larger voltage is applied across C 

closer to the source edge due to ac potential drop across 

the differential channel resistances R2, R3, ··· Rn in Fig. 2. 

This potential drop becomes larger at higher frequency, 

because the impedance of 1/(jωC) decreases. Therefore, 

the gate-to-source ac current tend to crowd around the 

source edge, as frequency becomes higher. Since this ac 

current crowding near the source edge results in shorter 

ac current path between gate and source, the equivalent 

resistance of Rgsi greatly decreases with increasing 

frequency. 

This decreasing frequency-dependence of Rgsi can be 

physically represented as an impedance of parallel RC 

block. Thus, the simple model with a single resistance 

Rgsi in Fig. 1(a) is not physically acceptable.  

In this paper, an improved small-signal MOSFET 

model with the additional NQS parallel block of 

resistance and capacitance (Rgs2, Cgs2) in Fig. 1(b) is 

proposed for better high-frequency modeling than Fig. 

1(a). 

Fig. 3 shows the physical input equivalent circuits 

 

(a) 

 

 

(b) 

Fig. 1. Small-signal MOSFET equivalent circuit in the 

saturation region (a) Using simple NQS gate-source resistance 

model, (b) Using improved NQS gate-source impedance model. 

 

 

Fig. 2. Non-quasi-static RC distributed network to represent 

lateral channel of MOSFET in the saturation region. 

 

 

 

  

(a)   

 

 

(b) 

Fig. 3. Input equivalent circuit in the saturation region (a) For 

extraction method using simple NQS model, (b) For extraction 

method using improved NQS model. 
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defined by Yi
11-parameter after Rd, Cjd, Rbk, Cbk, and Rs 

are removed from Fig. 1. In Fig. 3, Cgd is added to Cgso 

because Yi
11 is defined at shorted internal drain (D′) and 

source (S′).  

In the simple model, Rgsi in Fig. 1(a) is extracted using 

the following equation [11] derived from input 

equivalent circuit of Fig. 3(a) in the low-frequency range 

of ω ≪ 1/(RgCgg) where Rg = Rgsi+Rge and Cgg = 

Cgso+Cgsi+Cgd : 

 

 Re(Yi
11,LF)/[Im(Yi

11,LF)]
2 ≈ Rge + k2Rgsi    (1) 

 

where     k = Cgsi/(Cgso + Cgd + Cgsi)          (2) 

 

After Rd, Cjd, Rbk, Cbk, and Rs are determined using a 

RF direct extraction method [13], Yi
11 is determined by 

subtracting them from measured S-parameters. Fig. 5 

shows Vgs–dependence of Re(Yi
11,LF)/[Im(Yi

11,LF)]
2 

determined by selecting average values of measured data 

at near 5 GHz in Fig. 4. 

Since Rge is independent of Vgs, Rge is determined to 

be 1.6Ω by finding a lowest limited value of Re(Yi
11,LF)/ 

[Im(Yi
11,LF)]

2 at infinite Vgs using a curve-fitting of Fig. 5.  

In order to determine k in (2), Cgso is extracted to be 

26fF using the following equation derived in 

accumulation region (Vgs = VFB = -1.5V, Vds = 0V), 

where VFB is flat-band voltage [14]:  

 

 Cgso = Cgdo = – (1/ω)Im(Yi
12)LF        (3) 

 

where Cgso is assumed to be equal to Cgdo at Vds = 0V for 

symmetric MOSFETs. The frequency dependent data of 

–(1/ω)Im(Yi
12) in (3) are plotted and Cgdo is taken from 

the low frequency data in Fig. 6.  

The value of Cgd is extracted using –(1/ω)Im(Yi
12)LF at 

Vds = 1V. The Cgsi value is next extracted by Cgs - Cgso 

where Cgs = (1/ω)Im(Yi
11+Yi

12)LF at Vds = 1V. The 

frequency dependent data of –(1/ω)Im(Yi
12) and 

(1/ω)Im(Yi
11+Yi

12) in the saturation region are plotted 

with varying Vgs in Fig. 7. The Vgs-dependent data of Cgsi 

and Cgd extracted in the low frequency region are shown 

in Fig. 8. After k is calculated from (2) using Cgso, Cgsi 

and Cgd, Vgs-dependent data of Rgsi using the simple 

model are extracted by substituting k in (1). The 

extracted k increases with gate voltage due to the rise of 

Cgsi, as shown in Fig. 9. Using {Re(Yi
11,LF)/[Im(Yi

11,LF)]
2 

- Rge}/ k2 of (1), Vgs-dependent data of Rgsi for the simple 

model in Fig. 1(a) are extracted in Fig. 10. 

However, simulated real term of input impedance 

Real(1/Y11) data for a simple NQS model of Fig. 1(a) 

with Rgsi extracted using (1) shows severe disagreement 
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Fig. 4. Frequency response of Re(Yi
11)/[Im(Yi

11)]
2
 at various 

Vgs. 
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Fig. 5. Extracted Re(Yi
11,LF)/[Im(Yi

11,LF)]
2 versus Vgs.  
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Fig. 6. Frequency dependent data of –(1/ω)Im(Yi
12) in 

accumulation region. 
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in the frequency region up to 40 GHz as shown in Fig. 12. 

In order to find out the cause of the disagreement, 

frequency-dependence has been analyzed as follows: The 

3-dB cutoff frequency of fcs ≈ 1/(2πRgCgg) in a simple 

input equivalent circuit of Fig. 3(a) is estimated to be 

234.8 GHz at Vgs = 0.6 V. Due to this very high 

frequency of fcs, Real(1/Y11) of Fig. 1(a) becomes almost 

constant up to 40GHz as shown in Fig. 12. Thus, the 

simple NQS model can not simulate the decreasing 

frequency-dependence due to ac current crowding effect, 

resulting in large deviation from the measured data up to 

40 GHz in Fig. 12. 

In order to model the decreasing frequency 

dependency of Fig. 12, an improved NQS gate-source 

impedance model including the additional Rgs2 and Cgs2 

block in Fig. 1(b) is proposed. The NQS model 

parameters are extracted using the following new 

method: 

In the high-frequency(HF) range of 1/(Rgs2Cgs2)≪ ω 

≪1/(RgCgg), the following equation is approximated 

from Fig. 3(b) because the impedance of Rgs2 || Cgs2 is 

neglected: 

 

 Re(Yi
11,HF)/[Im(Yi

11,HF)]
2 ≈ Rge + k2Rgs1     (4) 
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(b) 

Fig. 7. Frequency dependent data in the saturation region (a) 

–(1/ω)Im(Yi
12), (b) (1/ω)Im(Yi

11+Yi
12). 
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Fig. 8. Vgs-dependent data of extracted Cgsi and Cgd. 
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Fig. 9. Extracted k versus Vgs.  
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Fig. 10. Extracted NQS resistances versus Vgs for simple 

model. 
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In the low-frequency range of ω≪1/(Rgs2Cgs2), the 

following equation is approximated from Fig. 3(b): 

 

 Re(Yi
11,LF)/[Im(Yi

11,LF)]
2 ≈ Rge + k2(Rgs1+Rgs2)   (5) 

 

Rgs1 and Rgs2 are extracted by substituting the high and 

low frequency values of Fig. 4 in (4) and (5), 

respectively. The Vgs-dependent data of Rgs1 and Rgs2 

extracted using the new method are shown in Fig. 11. 

For Cgs1 extraction, the following equation is used in 

the low-frequency range of ω≪1/(Rgs2Cgs2): 

 

 Cgs1 ≈ (1/ω)Im(Yi
11+Yi

12)LF - Cgso       (6) 

 

Using (6), it is found that Cgs1 = 53fF at Vgs = 0.6 V. 

The value of Cgs2 is extracted by fitting measured S-

parameters up to 40 GHz.  

Since the 3-dB cutoff frequency of fci ≈ 1/(2πRgs2Cgs2) 

= 7.3 GHz at Vgs = 0.6 V is calculated in a new input 

equivalent circuit of Fig. 3(b), the improved NQS model 

of Fig. 1(b) can accurately simulate the decreasing 

behavior due to ac current crowding effect in the input 

resistance of Real(1/Y11) up to 15 GHz of Fig. 12. 

As shown in Fig. 12, the simulated real term of input 

impedance Real(1/Y11) data of the improved NQS 

MOSFET model of Fig. 1(b) show better agreement with 

measured one up to 40GHz than those of the simple one, 

verifying the accuracy of the improved model.  

CONCLUSIONS 

An improved non-quasi-static gate-source impedance 

model including an additional NQS parallel RC block is 

developed to predict MOSFET input characteristics 

accurately. Using the improved model, a frequency 

response of input impedance is well predicted in the 

high-frequency region. The accuracy of the improved 

model has been verified by observing the better 

agreement between the measured and modeled input 

resistance up to 40 GHz than the simple one. 
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