• Title/Summary/Keyword: non-solvent

Search Result 484, Processing Time 0.029 seconds

Highly Efficient Biogas Upgrading Process Using Polysulfone Hollow Fiber Membrane at Low Temperature (폴리술폰 중공사막을 이용한 바이오가스 고순도화 고효율 저온 분리 공정)

  • Kim, Se Jong;Han, Sang Hoon;Yim, Jin Hyuk;Lee, Chung Seop;Chang, Won Seok;Kim, Gill Jung;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.140-149
    • /
    • 2022
  • In this study, the conditions of low temperature and high pressure of biogas upgrading process using polysulfone membrane have been designed and tested to achieve the high recovery and efficiency corresponding to those of the highly selective polymeric materials. Polysulfone hollow fiber membrane with 4-component dope solution was spun via non-solvent induced phase separation. The hollow fiber membrane was mounted into a 1.5 inch housing. The effective area was 1.6 m2, and its performance was examined in various operation temperatures and pressures. CO2 and CH4 permeances were 412 and 12.7 GPU at 20℃, and 280 and 3.6 GPU at -20℃, respectively, while the CO2/CH4 selectivity increased from 32.4 to 77.8. Single gas test was followed by the mixed gas experiments using single-stage and double stage where the membrane area ratio varied from 1:1 to 1:3. At the single-stage, CH4 purity increased and the recovery decreased as the stage-cut increased. At the double stage, the area ratio of 1:3 showed the higher CH4 recovery as decreasing the operation temperature at the same purity of CH4 97%. Finally, polysulfone hollow fiber membranes have yielded of both CH4 purity and recovery of 97% at -20℃ and 16 barg.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

Studies on the Antioxioative Character in the Etnyl Acetate Extractions of Rumex crispus (Rumex crispus의 에칠아세테이트 추출물의 항산화 성분에 관한 연구)

  • 신춘혜
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.592-602
    • /
    • 2001
  • This study was undertaken to investigate the antioxidative substance and activity of ethyl acetate extracted from Rumex crispus. Sample extracted follow in proper course of a solvent. Material refinement was carried out using silicagel column and Sephadex LH-20 column chromatography. Material sorting was carried by Gas Chromatography(GC/MS). 1,1-Diphenyl-2-Picrylhydrazyl(DPPH) free radical scavenging and enzyme activity were measured for antioxidative activity. as result of testing by DPPH free radical scavenging activity, Antioxidative activity was shown as the highest in the root, then leaf and stem in order. Ethyl acetate extraction of root part were 50% inhibitory concentration (IC50) Rumex activty(6.1 ug/mL). Rumex nipponicus(9.8 ug/ml) and Rumex acetoceae(31.5 ug/mL) in leaf part. The highest antioxidative activity of sample refined through silicagel column chromatography of Rumex crispus was appealed Fraction 5(IC50;3.57 ug/mL) in root and Fraction 6(IC50;85.9 ug/mL) in leaf. Fraction 5 in roof & Fraction 6 in leaf were refined using Sephadex LH-20 column chromatography. The highest antioxidative activity were appeared Fraction 4 (IC50;3.57 ug/mL) and Fraction 4 (IC50;18.41 ug/mL)in leaf. As for main phenol compounds 2,6-Dichloro-4-nitropnenol and 2-Isopropyl-5-methyl Phenol were identified in root and leaf, While 4-Vinyl-2- methoxy-phenol and 2,3-Dihydro- benzofuran were identifica ted only in leaf. Enzyme activity was shown low both in peroxidase(PDD) Non-activate(IU/mg protein)and in Superoxide dismutase(SOD) non-activate(IU/mg protein). 2,6-Dichloro-4-nitrophenol, 2-Isopropyl-5-methyl phenol, 4-Vinyl-2-methoxy-phenol were obtained in this experiment and these compounds are phenolic compounds which have OH group in the structure. With the result of this study these phenolic compounds which are extracted from Rumex crispus have high antioxidative effect. This antioxidative effect of Rumex crispus can be applied for chromo-preventive and antioxidative supplements which can be used for anti-allegy, aging, anti-tumor, aging and other oxidative disease for health promotion.

  • PDF

Physiological Activities of Fermented Gastrodia elata Blume Extracts (발효 천마 추출물의 생리 활성)

  • Park, An Na;Ku, Tae Kyu;Kim, Kyung Sun;Lee, Dong Won;Kim, Sang Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.702-711
    • /
    • 2015
  • This study was conducted to determine the feasibility of using Gastrodia elata Blume as a cosmetic raw material by investigating the physiological activities of its extracts, varying the concentration, solvent, and fermentation method (non-fermentation and fermentation using lactic acid bacteria and effective microorganisms). Of the extracts in three different solvents-water, EtOH, and 70% EtOH-at four different concentrations (0.725, 1.25, 2.5, and 5 mg/mL), the EtOH extracts demonstrated the highest contents of antioxidants (flavonoids, polyphenols, and DPPH free radical scavengers). The DPPH free radical scavenging activity in the EtOH extracts of EM-fermented Gastrodia elata Blume increased from $27.08{\pm}0.5%$ at 1.25 mg/mL to $35.89{\pm}0.8%$ at 2.5 mg/mL. The tyrosinase inhibitory activity test was performed to measure skin-whitening capacity and revealed the LB-fermented EtOH extracts to be the most efficacious ($39.1{\pm}0.4%$ at 0.725 mg/mL, $62.8{\pm}1.5%$ at 2.5 mg/mL). Viability was found to exceed 85% in RAW 264.7 cells treated with all extracts (water, EtOH, 70% EtOH at 10, 25, $50{\mu}L$, fermented and non-fermented), thus proving that Gastrodia elata Blume extracts do not cause inflammation. When RAW 264.7 cells were stimulated with lipopolysaccharide as positive controls under the same conditions to determine the antioxidant activity in the presence of reactive oxygen species (ROS), EM-fermentation was found to impart excellent antioxidant capacity. This study verified the physiological activities of fermented Gastrodia elata Blume extracts that are best suited for cosmetic ingredients, such as antioxidants, tyrosinase inhibitors and anti-inflammatory agents.

Filtration Characteristics of H2O-C6H12O6 Solution at Cell Membrane Model of Kidney which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 신장의 세포막모델에서 포도당수용액 (H2O-C6H12O6)의 여과작용특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • The filtration characteristics of H2O-C6H12O6 solution at cell membrane model in renal tubule which irradiated by high energy x-ray(linac 6MV) was investigated. The cell membrane model used in this experiment was a polysulfonated copolymerized membrane of m-phenylene-diamine(MPD) and trimesoyl chloride(TMC)-hexane. They were used to two cell membrane models(CM-1, CM-2). The cell membrane model composed of 0.5 wt% TMC-hexane solution(CM-2) had higher permeate flux(Jv) and rejection coefficient(R) than composed of 0.1 wt% TMC-hexane solution(CM-1). The permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in two cell membrane models(CM-1, CM-2) were increased with increase of pressure drop and effective pressure difference. In this experiment range(pressure 1.5-4 MPa, temperature 36.5 ℃), permeate flux(Jv) of H2O solvent in irradiated membrane was found to be decreased about 20-30 times than non-irradiated membrane, permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in irradiated membrane was found to be decreased about 2-13 times, about 4-6 times than non-irradiated membrane, respectively. The concentration increase of H2O-C6H12O6 solution at cell membrane model significantly was increased at rejection coefficient(R), was decreased at permeate flux(Jv). As the filtration of H2O-C6H12O6 solution in cell membrane model were abnormal, cell damages were appeared at cell.

Antioxidative, Antimicrobial, and Anti-proliferative Activities of the Floret and Stalk of Broccoli (Brassica oleracea L.) (브로콜리 꽃송이 및 줄기의 항산화, 항균 및 대장암 세포 생육억제효과)

  • Kim, Mi-Sun;Lee, Ye-Seul;Kwon, Ha-Young;Kim, Jong Sik;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • In the course of study for a use for non-edible parts of broccoli (Brassica oleracea L), and the development of processed food utilizing these parts, edible floret and non-edible stalk were extracted with ethanol and different organic solvent fractions were prepared. With 10 different extracts and fractions, their useful components and various biological activities, such as antioxidant, antimicrobial and anti-proliferation activity, were investigated. The stalk has more abundant water soluble carbohydrate when compared with the floret, and floret has higher hexane-soluble pigments. Analysis of total flavonoid and total polyphenol contents showed that the floret has 1.5~1.99 times higher concentrations than the stalk. Among the fractions, ethylacetate (EA) fractions have the highest amount of total flavonoid and total polyphenol. The stalk and floret possessed 9.45 and 42.01 mg-total flavonoid/g, respectively. In the antioxidation activity assay, the EA fraction of floret showed strong radical scavenging activity and reducing power, while the n-hexane fraction of the stalk exhibited nitrite scavenging activity. In the antimicrobial activity assay, the EA fraction of floret showed a strong and broad-range of antibacterial activity, irrespective of gram positive or gram negative bacteria. In a while, the hexane and EA fractions revealed anti-proliferative effects against the human colorectal cancer cell HCT-116. Strong anti-proliferative activities were found in the hexane fraction of stalk (18.4% of cell viability), and the n-butanol fraction of floret (6.9% of cell viability). Our results suggest that the further study of the characterization of active fractions and the identification of active components from different parts of broccoli are needed to develop functional foods or novel plant-derived medicines.

The Trend of Cigarette Design and Tobacco Flavor System Development

  • Wu, Jimmy Z.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • In light of addressing consumer health concern, coping with anti-tobacco movement, and promoting new product, tobacco industry is actively pursuing to make a new generation of cigarettes with low tar and nicotine deliveries, and less harmful substances. Low tar and low nicotine cigarettes increases their market shares dramatically world wide, especially in KT&G, multinational tobacco companies, EU countries, even in China regulated by CNTC to set up yearly target to lower tar and nicotine deliveries. On the other hand, to design a new cigarette with reduced harmful substances begins to gain speed. The "modified Hoffmann list" publishes thirty plus substances in tobacco leaf and main smoke stream, which is the prime suspect causing health problems. Various ways and means are developed to reduce such components including new tobacco breeds, new curing method, tobacco leaf treatment before processing, selected filtration system, innovated casing system to reduce free radicals, as well as some non conventional cigarette products. In TSRC held this year, the main topic is related to reduce tobacco specific nitrosamines in tobacco leaf. The new generation of cigarette is in the horizon. It still needs a lot help to produce commercial products with satisfied taste and aroma characters. The flavor industry is not regulated by many governments demanding which ingredients might or might not be for tobacco use. However, most of the cigarette companies self impose a list of ingredients to guide flavor suppliers to design flavors. Unfortunately, the number of ingredients in those lists is getting shorter every year. It is understandable that the health is not the only reason. Some cigarette companies are playing safe to protect the company from potential lawsuit, while others are just copying from their competitors. Moreover, it is obvious that it needs more assistance from casings and flavors to design new generation of cigarettes with missing certain flavor components in tobacco leaf and main smoke stream. These flavor components are either non-existed or at lower level at new form of cured tobacco leaf or filtered in the main smoke stream along with reduced harmful substances. The use of carbon filters and other selected filtration system poses another tough task for flavor system design. Specific flavor components are missing from the smoke analysis data, which brings a notion of "carbon taste" and "dryness" of mouth feel. It is ever more demanded by cigarette industry to flavor suppliers to produce flavors as body enhancer, tobacco notes, salivating agents, harshness reducer, and various of aromatic notes provided they are safe to use. Another trend is that water based flavor or flavor with reduced ethanol as solvent is gaining popularity. It is preferred by some cigarette companies that the flavor is compounded with all natural ingredients or all ingredients should he GMO free. The new generation of cigarettes demands many ways of new thinking process. It is also vital for tobacco industry. It reflects the real needs for the consumers that the cigarette product should be safe to use as well as bearing the taste and aroma characters smokers always enjoyed. An effective tobacco flavor system is definitely a part of the equation. The global trend of tobacco industry is like trends of any other industries lead by consumer needs, benefited with new technology availability, affected by the global economy, and subjected for various rules and regulations. Anti-tobacco organizations and media exceptionally scrutinize cigarette, as a legal commercial product. Cigarette is probably the most studied commercial product for its composition, structure, deliveries, effects, as well as its new developmental trend. Therefore, any new trend of cigarette development would be within these boundaries. This paper is trying to point out what it would be like for tobacco industry in the next few yews and what concerns the tobacco industry. It focuses mostly on the efforts to produce safer cigarettes. It is such a vital task for the tobacco industry and its affiliate industries such as cigarette papers, filters, flavors, and other materials. The facts and knowledge presented in this paper might be well known for the public. Some of the comments and predictions are very much personal opinion for a further discussion.

Adsorption and Metabolism of [14C]butachlor in Rice Plants Under Pot Cultivation ([14C]Butachlor의 벼에 대한 흡수 및 대사)

  • Kim, Ju-Hye;Kim, Jong-Hwan;Kim, Dae-Wook;Lee, Bong-Jae;Kim, Chansub;Ihm, Yangbin;Seo, Jong-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.174-184
    • /
    • 2015
  • In the present study, the metabolism of [$^{14}C$]butachlor was investigated in rice plant according to the OECD test guideline No. 501. [$^{14}C$]Butachlor was treated as granule to paddy water by application of 1.5 kg ingredient (a.i.)/ha at the 3~4 leave stage of rice plant. At 85 days after treatment (DAT), samples of panicle, foliage, and roots were taken for radioactivity analysis. Upon harvest at 126 DAT, rice plants were separated into brown rice, husk, straw, and root parts. Amounts of total radioactivity absorbed by rice plant ranged from 8.6 to 9.8% of applied radioactivity (AR). Total radioactive residues (TRRs) of rice plant at 126 DAT was the highest as 4.0421 mg/kg (7.3% AR) in the straw followed by 1.4595 mg/kg (2.4% AR) in the root, 0.7257 mg/kg (0.1% AR) in the husk. The lowest level recording 0.1020 mg/kg (0.1% AR) was found in brown rice. Each part was extracted with various solvents and solvent/water mixtures. Greater than 70% of TRRs was readily extractable from foliage, panicle, husk and straw. Only 34.0% of the brown rice and 43% of root based on TRRs were extractable showing that the residues were completely assimilated in the plant tissue. The level of non-extractable radioactivity was ranged from 26.2 to 66.0% of TRRs. From this study, five tentative major metabolites (M1, M2, M3, M4 and M5) were observed in rice extracts. Among the metabolites, 2,6-diethylaniline assigned as M4 was identified in rice plant by comparing to retention time of reference standard. Un-metabolized butachlor was not detected in any fractions. In soil extracts, N-(butoxymethyl)-N-(2,6-diethyl phenyl)acetamide, 2,6-diethylaniline, M2, M3 and M5 were observed. And the concentration of butachlor was low level (ca. 0.03 mg/kg).