Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam

전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질

  • Choi, Yong-Jin (Department of chemical engineering, Dong-eui University) ;
  • Lee, Sung-Won (Department of safety & environmental engineering, Dong-guk University) ;
  • Seo, Bong-Kuk (Division of green chemistry, Krict) ;
  • Kim, Min (Department of safety & environmental engineering, Dong-guk University)
  • 최용진 (동의대학교 화학공학과) ;
  • 이성원 (동국대학교 안전환경시스템공학과) ;
  • 서봉국 (한국화학연구원 그린화학연구단) ;
  • 김민 (동국대학교 안전환경시스템공학과)
  • Received : 2011.01.20
  • Accepted : 2011.03.24
  • Published : 2011.06.30

Abstract

A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

본 연구에서는 소수성 표면의 막을 친수화시키는 방법으로 기존의 방법(브렌딩, 화학적처리 및 post-irradiation에 의한 광조사법)의 단점을 극복하기 위해 주고분자에 전자빔을 전조사하는 방법을 제안하였다. 본 연구 제조공정은 4부분으로 구성되며 첫째로 주고분자를 전자빔을 이용하여 수증기 및 공기조건하에서 전조사함으로써 친수기를 도입하는 전구체의 제조공정, 이를 이용하여 도프을 제조하는 도프용액 제조공정, 도프용액을 부직포 위에 캐스팅 하는 캐스팅 공정, 마지막으로 비용매에 침적하여 응고시켜 분리막을 형성시키는 분리막 제조공정으로 이루어진다. 이렇게 제조된 분리막은 기존의 친수화 방법을 통하여 얻어진 다공 분리막에 비하여 보다 균일한 형태의 친수화가 가능하며, 제조공정의 단순화를 꾀할 수 있다는 장점을 가지고 있다. 이를 수행하기 위해 소수성 고분자인 polyvinylidene f1uoride (PVDF)를 75~125 K Gray 범위 선량의 전자빔 (electron beam, EB) 조사하여 전구체를 제조하였다. 제조된 전구체는 FTIR, EDS, DSC 등에 의해 친수기의 도입 및 도입경로를 확인한 결과, 하이드록실기가 친수성기로 도입되었고, 도입경로로는 주쇄의 탈수소화 반응경로에 의해 이루어진 것으로 추론 할 수 있었다. 제조막의 친수화는 접촉각 측정을 통하여 평가하였다.(pristine PVDF로 제조된 막의 접촉각은 약 $62^{\circ}$ 125 K Gray-PVDF로 제조된 막의 접촉각은 $13^{\circ}$). 또한 제조된 PVDF 다공막의 다공성도를 수은압입측정을 통하여 평가하였으며 SEM 이미지를 통하여 몰폴로지 및 표변 공경싸이즈를 관찰하였다. 그들의 결과는 전자빔의 선량이 높게 조사된 PVDF전구체를 사용한 막일수록 공경의 크기 및 다공도(pristine PVDF : 82%, 125 K Gray-PVDF : 63%)가 감소되고 있음을 나타내었다. 순수 투과실험에서도 동일한 경향을 나타내어 pristine PVDF의 경우는 892 LMH, 125 K Gray-PVDF의 경우는 355 LMH의 결과를 얻었다.

Keywords

References

  1. Y. H. Sua, Y. Liu, Y. M. S, J. Y. Lai, D. M. Wang, B. Liu, M. D. Guiver, and W. T. Tsai, "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells", J. Membr. Sci., 296, 21 (2007). https://doi.org/10.1016/j.memsci.2007.03.007
  2. Y. Yin, O. Yamada, S. Hayashi, K. Tanaka, H. Kita, and K. I. Okamoto, "Chemically modified proton-conducting membranes based on sulfonated polyimides: Improved water stability and fuel-cell performance", J. Polym. Sci. Part A: Polym. Chem., 44, 3751 (2006). https://doi.org/10.1002/pola.21477
  3. A. Lhassani and J. Bentama, "Modeling of mass transfer sintered clay membranes for application to treat water", Desalination, 179, 335 (2005). https://doi.org/10.1016/j.desal.2004.11.079
  4. M. Cakmakcea, N. Kayaalpb, and I. Koyuncu, "Desalination of produced water from oil production fields by membrane processes", Desalination, 222, 176 (2008). https://doi.org/10.1016/j.desal.2007.01.147
  5. P. Cote, S. Sivernsa, and S. Montib, "Comparison of Membrane-based Solutions for Water Reclamation and Desalination", Desalination, 182, 251 (2005). https://doi.org/10.1016/j.desal.2005.04.015
  6. G. Zhang, S. Ji, X. Gaoa, and Z. Liu, "Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes", J. Membr. Sci., 309, 28 (2008). https://doi.org/10.1016/j.memsci.2007.10.012
  7. P. Le-Clech, V. Chen, and T. A. G. Fane, "Fouling in membrane bioreactors used in wastewater treatment", J. Membr. Sci., 284, 17 (2006). https://doi.org/10.1016/j.memsci.2006.08.019
  8. Z. Wang, Z. Wu, X. Yin, and L. Tian, "Membrane fouling in a submerged membrane bioreactor (MER) under sub-critical flux operation: Membrane foulant and gel layer characterization", J. Membr. Sci., 325, 238 (2008). https://doi.org/10.1016/j.memsci.2008.07.035
  9. H. C. Lee and J. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic mf and activated carbon adsorption: effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009).
  10. M. Zhanga, Q. T. Nguyen, and Z. Pinga, "Hydrophilic modification of poly(vinylidene fluoride) microporous membrane", J. Membr. Sci., 327, 78 (2009). https://doi.org/10.1016/j.memsci.2008.11.020
  11. N. A. Ochoa, M. Masuelli, and J. Marchese, "Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes", J. Membr. Sci., 226, 203 (2003). https://doi.org/10.1016/j.memsci.2003.09.004
  12. B. Deng, M. Yu, X. Yang, B. Zhang, and L. Li, "Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization", J. Membr. Sci., 350, 252 (2010). https://doi.org/10.1016/j.memsci.2009.12.035
  13. F. Liu, B. K. Zhu, and Y. Y. Xu, "Improving the hydrophilicity of PVDF porous membrane by electron beam initiated surface grafting of AA/SSS binary monomers", Applied Surface Sci., 253, 2096 (2006). https://doi.org/10.1016/j.apsusc.2006.04.007
  14. W. Z. Lang, Z. L. Xu, H. Yanga, and W. Tong, "Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane", J. Membr. Sci., 288, 123 (2007). https://doi.org/10.1016/j.memsci.2006.11.009
  15. N. W. Kim, "Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes", Membrane Journal, 17(1), 44 (2007).
  16. N. A. Hashim, F. Liu, and K. Li, "A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer", J. Membr. Sci., 345, 139 (2009).
  17. E. S. Kim, Y. J. Kim, Q. Yub, and B. Deng, "Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF)", J. Membr. Sci., 344, 71 (2009). https://doi.org/10.1016/j.memsci.2009.07.036
  18. H. J. Choi, K. S. Yang, K. B. Heo, B. S. Kim, and M. Kim, "Adsorption characteristics of amomia by the cation-exchange membrane", Membrane Journal, 17(1), 54 (2007).
  19. C. Lee, K. Y. Kim, and B. H. Ryu, "Structural changes of PVDF with $^{60}Co\;{gamma}-ray$ irradiation", Hankuk Anzeonhakhezi, 3, 26 (2004).
  20. Robert, T. Morrison, Robert and T Neilson Boyd, Organic chemistry 6th ed. in Japanese, Tokyokagaku Press, Tokyo (1994).
  21. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer handbook 5th ed. welly-intersci. Pub., John wiley & Sons, Inc. New York. VI, 193-277 (1999).
  22. M. D. Duca, C. L. Plosceanu, and T. Pop, "Surface modifications of PVDF under rf Ar plasma", Polym. Degradation and Stability, 61, 65 (1998). https://doi.org/10.1016/S0141-3910(97)00130-4
  23. S. Han, W. K. Choi, K. H. Yoon, and K. Koh, "Surface reaction on polyvinylidene fluoride (PVDF) irradiated by low energy ion beam in reactive gas environment", J. Appl. Polymer Sci., 72, 41 (1997).
  24. T. H. Youmg and L. W. Chen, "Por formation mechanism of membmees from phase inversion process", Desalination, 103, 233 (1995). https://doi.org/10.1016/0011-9164(95)00076-3
  25. J. S. Park, 비대칭 polyetherimide막의 구조형성에 있어 gamma-butyrolactone 첨가에 관한 연구, Master thesis, Korea University (1999).