DOI QR코드

DOI QR Code

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries

전고체전지용 황화물 고체전해질 습식 합성기술 동향

  • Ha, Yoon-Cheol (Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI))
  • 하윤철 (한국전기연구원차세대전지연구센터)
  • Received : 2022.03.25
  • Accepted : 2022.06.03
  • Published : 2022.08.31

Abstract

The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

상용 리튬이온전지의 에너지밀도 한계와 안전성 이슈로 불연성 전고체전지 개발이 현안이 되고 있다. 특히, 전기자동차를 위한 차세대 이차전지에 황화물 고체전해질의 적용 가능성이 높아지면서, 고체전해질의 대량생산과 저가격화를 위한 노력 또한 활발해 진행되고 있다. 황화물 고체전해질에 관한 현재까지의 대부분의 연구에서는 조성 및 불순물 제어가 용이하고 균질화와 열처리 시간을 줄일 수 있는 고에너지 기계적 밀링법을 이용하여 열역학적으로 안정한 상 및 준-안정한 상에 대한 탐색을 수행해 왔다. 이를 통해 액체 전해질의 리튬이온전도도를 능가하는 다양한 황화물 고체전해질이 보고되어, 고에너지밀도 고안전성 전고체전지 구현에 대한 기대가 커지고 있다. 그러나, 고에너지 기계적 밀링법은 대량생산에 따른 동일 물성 획득이 쉽지 않고, 입도나 형상 제어가 용이하지 않으며, 분쇄-분급 과정에서 물성의 열화가 발생하는 단점이 알려져 있다. 이에 비해 대량생산과 저가격화에 유리한 습식 합성기술은 아직 다양한 고체전해질 제조에 응용되지는 못하고 있다. 습식 합성기술에서는 입자형, 용액형, 또는 혼합형으로 전구체를 합성하고 용매를 제거한 후 열처리하는 공정을 통해 제조하고 있으나, 전구체의 형성 메커니즘에 대한 명확한 규명도 아직 이루어지지 않고 있다. 본 총설에서는 용매 내 원료들의 반응 메커니즘을 중심으로 한 황화물 고체전해질의 습식 합성기술 동향을 살펴보고자 한다.

Keywords

Acknowledgement

본 연구는 한국전기연구원 기본사업(22A01011), 산업통상자원부 및 산업기술평가관리원(KEIT)의 소재부품기술개발사업(20009957), 중소벤처기업부 및 중소기업기술정보진흥원 Tech-Bridge활용 상용화기술개발 사업(S3177631)으로부터 지원받아 수행되었음을 밝히며 이에 감사드립니다.

References

  1. M. S. Ziegler and J. E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline, Energy Environ. Sci., 14(4), 1635-1651 (2021). https://doi.org/10.1039/D0EE02681F
  2. K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(6), eaas9820 (2018). https://doi.org/10.1126/sciadv.aas9820
  3. A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
  4. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater., 10, 682-686 (2011). https://doi.org/10.1038/nmat3066
  5. Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7(2), 627-631 (2014). https://doi.org/10.1039/C3EE41655K
  6. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
  7. H.-J. Deiseroth, S.-T. Kong, M. Schlosser, and C. Reiner, Lithium argyrodite, WO Patent WO/2009/047254 (2009).
  8. K. Terai, F. Utsuno, T. Umeki, M. Nakagawa, and H. Yamaguchi, Sulfide solid electrolyte, WO Patent WO/2018/047565 (2018).
  9. T. Tsukasa, C. Takashi, and I. Takahiro, Sulfide-based solid electrolyte particles, WO Patent WO/2019/176895 (2019).
  10. C. Yu, Y. Li, M. Willans, Y. Zhao, K. R. Adair, F. Zhao, W. Li, S. Deng, J. Liang, M. N. Banis, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, Y. Huang, and X. Sun, Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping, Nano Energy, 69, 104396 (2020). https://doi.org/10.1016/j.nanoen.2019.104396
  11. P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, and L. F. Nazar, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution, Angew. Chem. Int. Ed., 58(26), 8681-8686 (2019). https://doi.org/10.1002/anie.201814222
  12. W. D. Jung, J.-S. Kim, S. Choi, S. Kim, M. Jeon, H.-G. Jung, K. Y. Chung, J.-H. Lee, B.-K. Kim, J.-H. Lee, and H. Kim, Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth, Nano Lett., 20(4), 2303-2309 (2020). https://doi.org/10.1021/acs.nanolett.9b04597
  13. X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang, H. Liu, M. Immediato-Scuotto, and Y.-Y. Hu, Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6-xPS5-xCl1+x, Energy Storage Mater., 30, 67-73 (2020). https://doi.org/10.1016/j.ensm.2020.04.042
  14. K. Oh, D. Chang, B. Lee, D.-H. Kim, G. Yoon, I. Park, B. Kim, and K. Kang, Native defects in Li10GeP2S12 and their effect on lithium diffusion, Chem. Mater., 30(15), 4995-5004 (2018). https://doi.org/10.1021/acs.chemmater.8b01163
  15. M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, and W. G. Zeier, Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries, J. Am. Chem. Soc., 140(47), 16330-16339 (2018). https://doi.org/10.1021/jacs.8b10282
  16. L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors, J. Am. Chem. Soc., 141(48), 19002-19013 (2019). https://doi.org/10.1021/jacs.9b08357
  17. Y. Lee, J. Jeong, D.-H. Lim, S.-O. Kim, H.-G. Jung, K. Y. Chung, and S. Yu, Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries, ACS Sustain. Chem. Eng., 9(1), 120-128 (2021). https://doi.org/10.1021/acssuschemeng.0c05549
  18. Y. Lee, J. Jeong, H. J. Lee, M. Kim, D. Han, H. Kim, J. M. Yuk, K.-W. Nan, K. Y. Chung, H.-G. Jung, and S. Yu, Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-Ion batteries, ACS Energy Lett., 7(1), 171-179 (2022). https://doi.org/10.1021/acsenergylett.1c02428
  19. A. Banik, T. Famprikis, M. Chidiu, S. Ohno, M. A. Kraft, and W. G. Zeier, On the underestimated influence of synthetic conditions in solid ionic conductors, Chem. Sci., 12, 6238-6263 (2021). https://doi.org/10.1039/D0SC06553F
  20. Y.-C. Ha, S.-M. Lee, B. G. Kim, G. Park, J.-W. Park, J. Park, J.-H. Yu, W.-J. Lee, Y.-J. Lee, and H. Choi, Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid battery comprising the same, WO Patent PCT/KR2022/000464 (2022).
  21. A. Miura, N. C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N. H. H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3, 189-198 (2019). https://doi.org/10.1038/s41570-019-0078-2
  22. M. Ghidiu, J. Ruhl, S. P. Culver, and W. G. Zeier, Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective, J. Mater. Chem. A, 7, 17735-17753 (2019). https://doi.org/10.1039/C9TA04772G
  23. Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4, J. Am. Chem. Soc., 135(3), 975-978 (2013). https://doi.org/10.1021/ja3110895
  24. K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li3PS4, Solid State Ion., 182(1), 53-58 (2011). https://doi.org/10.1016/j.ssi.2010.10.001
  25. M. Calpa, H. Nakajima, S. Mori, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Formation mechanism of β-Li3PS4 through decomposition of complexes, Inorg. Chem., 60(10), 6964-6970 (2021). https://doi.org/10.1021/acs.inorgchem.1c00294
  26. F. Marchini, B. Porcheron, G. Rousse, L. A. Blanquer, L. Droguet, D. Foix, T. Koc, M. Deschamps, and J. M. Tarascon, The hidden side of nanoporous β-Li3PS4 solid electrolyte, Adv. Energy Mater., 11(34), 2101111 (2021). https://doi.org/10.1002/aenm.202101111
  27. E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, and C. Liang, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc., 137(4), 1384-1387 (2015). https://doi.org/10.1021/ja508723m
  28. S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Drager, F. von Seggern, H. Sommer, and J. Janek, Li4PS4I: A Li+ superionic conductor synthesized by a solvent-based soft chemistry approach, Chem. Mater., 29(4), 1830-1835 (2017). https://doi.org/10.1021/acs.chemmater.7b00013
  29. S.-J. Choi, S.-H. Lee, Y.-C. Ha, J.-H. Yu, C.-H. Doh, Y. Lee, J.-W. Park, S.-M. Lee, and H.-C. Shin, Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries, J. Electrochem. Soc., 165, A957-A962 (2018). https://doi.org/10.1149/2.0981805jes
  30. S.-J. Choi, S.-H. Choi, A. D. Bui, Y.-J. Lee, S.-M. Lee, H.-C. Shin, and Y.-C. Ha, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10(37), 31404-31412 (2018). https://doi.org/10.1021/acsami.8b11244
  31. A. D. Bui, S.-H. Choi, H. Choi, Y.-J. Lee, C.-H. Doh, J.-W. Park, B. G. Kim, W.-J. Lee, S.-M. Lee, and Y.-C. Ha, Origin of the outstanding performance of dual halide doped Li7P2S8X (X = I, Br) solid electrolytes for all-solid-state lithium batteries, ACS Appl. Energy Mater., 4(1), 1-8 (2021).
  32. S. Yubuchi, A. Hayashi, and M. Tatsumisago, Application to all-solid-state batteries with Li6PS5Br electrolyte prepared by a liquid-phase technique, Meet. Abstr., MA2016-02, 3982 (2016). https://doi.org/10.1149/MA2016-02/53/3982
  33. S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, and M. Tatsumisago, An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol, J. Mater. Chem. A, 7, 558-566 (2019). https://doi.org/10.1039/C8TA09477B
  34. L. Zhou, K.-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, and L. F. Nazar, Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4(1), 265-270 (2019). https://doi.org/10.1021/acsenergylett.8b01997
  35. M.-J. Kim, I.-H. Choi, S. C. Jo, B. G. Kim, Y.-C. Ha, S.-M. Lee, S. Kang, K.-J. Baeg, and J.-W. Park, A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes, Small Methods, 5(11), 2100793 (2021). https://doi.org/10.1002/smtd.202100793
  36. M. Calpa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process, RSC Adv., 7, 46499-46504 (2017). https://doi.org/10.1039/C7RA09081A
  37. F. M. Delnick, G. Yang, E. C. Self, H. M. Meyer III, and J. Nanda, Investigation of complex intermediates in solvent-mediated synthesis of thiophosphate solid-state electrolytes, J. Phys. Chem. C, 124(50), 27396-27402 (2020). https://doi.org/10.1021/acs.jpcc.0c08761
  38. K. Yamamoto, M. Takahashi, K. Ohara, N. H. H. Phuc, S. Yang, T. Watanabe, T. Uchiyama, A. Sakuda, A. Hayashi, M. Tatsumisago, H. Muto, A. Matsuda, and Y. Uchimoto, Synthesis of sulfide solid electrolytes through the liquid phase: optimization of the preparation conditions, ACS Omega, 5(40), 26287-26294 (2020). https://doi.org/10.1021/acsomega.0c04307
  39. M. Calpa, N. C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, and K. Tadanaga, Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents, Chem. Mater., 32(22), 9627-9632 (2020). https://doi.org/10.1021/acs.chemmater.0c03198