DOI QR코드

DOI QR Code

롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process

  • 백동혁 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 유영민 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 김인철 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 박유인 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 남승은 (한국화학연구원 화학공정연구본부 그린탄소연구센터) ;
  • 조영훈 (한국화학연구원 화학공정연구본부 그린탄소연구센터)
  • Dong Hyeok Baek (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Youngmin Yoo (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • In-Chul Kim (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • You-In Park (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Seung-Eun Nam (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology) ;
  • Young Hoon Cho (Green Carbon Research Center, Chemical and Process Technology Division, Korea Research Institute of Chemical Technology)
  • 투고 : 2023.12.23
  • 심사 : 2024.01.26
  • 발행 : 2024.02.29

초록

고분자 분리막의 대표적인 형태 중 하나인 평판형 분리막은 제조가 용이하여 실험실에서 분리막 소재 연구에서부터 실제 상용 분리막 생산에 이르기까지 널리 활용되는 분리막의 형태이다. 정밀여과 및 한외여과 등에 사용되는 평판형의 다공성 고분자 분리막은 주로 상분리 공정을 통해 제조할 수 있으며, 여기에는 비용매 유도 및 증기 유도 상분리 공정이 활용된다. 그러나 상분리 공정 특성상 주변 환경과 실험자에 따라 샘플 간 편차가 쉽게 발생하여 재현성의 확보가 어려운 점이 있다. 따라서 개발된 제조기술을 스케일업 및 재현성 확보를 위해 제어된 환경에서 연속식 대면적 제조가 가능한 롤투롤 제조장치가 필요하며, 본 연구에서는 실험실 스케일의 제조기술을 나이프 및 슬롯다이 롤투롤 공정으로 스케일 업 했을 때 나타나는 제조 환경 차이에 따른 분리막의 특성 변화를 비교하였다. 최종적으로 연속식 제조공정 인자에 대한 최적화를 통해 대면적 제조 시 분리막의 균일성을 확보하였다.

The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.

키워드

과제정보

본 연구는 산업통상자원부(과제번호: 20010846)와 한국화학연구원 주요사업(KK2311-40)을 통해 수행되었으며 이에 감사드립니다.

참고문헌

  1. H. H. Aung, R. Patel, and J. H. Kim, "Review on antifouling membranes with surface-patterning for water purification", Membr. J., 31, 161-169 (2021).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.3.161
  2. M. Ulbricht, "Advanced functional polymer membranes", Polymer, 47, 2217-2262 (2006).  https://doi.org/10.1016/j.polymer.2006.01.084
  3. S.-R. Choi, S.-J. Park, B.-K. Seo, K. W. Lee, and M.-J. Han, "Effect of toluene added to casting solution on characteristic of phase inversion polysulfone membrane", Appl. Chem. Eng., 19, 633-639 (2008). 
  4. S.-G. Kim, J. Jegal, and K.-H. Lee, "Pervaporation separation of water-isopropanol mixtures through modified asymmetric polyetherimide membrane: The effect of NaOH concentration and modification reaction times on the morphology of the morphology of the modified membranes", Appl. Chem. Eng., 10, 515-522 (1999). 
  5. K. K. Chen, W. Salim, Y. Han, D. Wu, and W. W. Ho, "Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas", J. Membr. Sci., 595, 117504 (2020). 
  6. H. J. Lee, M. J. Koh, D. J. Kim, and S. Y. Nam, "Effect of non-ionic additive on morphology and gas permeation properties of polysulfone hollow fiber membrane", Membr. J., 22, 224-233 (2012). 
  7. Y. Liu, G. Koops, and H. Strathmann, "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution", J. Membr. Sci., 223, 187-199 (2003).  https://doi.org/10.1016/S0376-7388(03)00322-3
  8. C.-H. Kim, Y. Yoo, I.-C. Kim, S.-E. Nam, J.-H. Lee, Y. Baek, and Y. H. Cho, "Improving physical fouling tolerance of pes filtration membranes by using double-layer casting methods", Membr. J., 33, 191-200 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.4.191
  9. C. Yeom, J. Kim, H. Park, S. E. Park, K. Y. Lee, and K.-H. Lee, "Formation of mesoporous membrane by reverse thermally induced phase separation (RTIPS) process using flash freezing", Membr. J., 31, 67-79 (2021).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.1.67
  10. X. Dong, T. J. Jeong, E. Kline, L. Banks, E. Grulke, T. Harris, and I. C. Escobar, "Eco-friendly solvents and their mixture for the fabrication of polysulfone ultrafiltration membranes: An investigation of doctor blade and slot die casting methods", J. Membr. Sci., 614, 118510 (2020). 
  11. J. Won, H. J. Lee, and Y. S. Kang, "The effect of dope solution characteristics on the membrane morphology and gas transport properties: 2. PES/γ-BL system", J. Membr. Sci., 176, 11-19 (2000).  https://doi.org/10.1016/S0376-7388(00)00424-5
  12. A. Hamraoui and T. Nylander, "Analytical approach for the lucas-washburn equation", J. Colloid Interface Sci., 250, 415-421 (2002).  https://doi.org/10.1006/jcis.2002.8288
  13. L. R. Fisher and P. D. Lark, "An experimental study of the washburn equation for liquid flow in very fine capillaries", J. Colloid Interface Sci., 69, 486-492 (1979).  https://doi.org/10.1016/0021-9797(79)90138-3
  14. M. Xiao, F. Yang, S. Im, D. S. Dlamini, D. Jassby, S. Mahendra, R. Honda, and E. M. V. Hoek, "Characterizing surface porosity of porous membranes via contact angle measurements", J. Mater. Sci. Lett., 2, 100022 (2022). 
  15. F. A. AlMarzooqi, M. R. Bilad, B. Mansoor, H. and A. Arafat, "A comparative study of image analysis and porometry techniques for characterization of porous membranes", J. Mater. Sci., 51, 2017-2032 (2016). https://doi.org/10.1007/s10853-015-9512-0