Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.3.95

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries  

Ha, Yoon-Cheol (Next Generation Battery Research Center, Korea Electrotechnology Research Institute (KERI))
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.3, 2022 , pp. 95-104 More about this Journal
Abstract
The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.
Keywords
All-Solid-State Lithium Battery; Sulfide Solid Electrolyte; Wet Chemical Synthesis; Reaction Mechanism; Ionic Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, and W. G. Zeier, Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries, J. Am. Chem. Soc., 140(47), 16330-16339 (2018).   DOI
2 L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors, J. Am. Chem. Soc., 141(48), 19002-19013 (2019).   DOI
3 Y. Lee, J. Jeong, D.-H. Lim, S.-O. Kim, H.-G. Jung, K. Y. Chung, and S. Yu, Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries, ACS Sustain. Chem. Eng., 9(1), 120-128 (2021).   DOI
4 Y. Lee, J. Jeong, H. J. Lee, M. Kim, D. Han, H. Kim, J. M. Yuk, K.-W. Nan, K. Y. Chung, H.-G. Jung, and S. Yu, Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-Ion batteries, ACS Energy Lett., 7(1), 171-179 (2022).   DOI
5 A. Banik, T. Famprikis, M. Chidiu, S. Ohno, M. A. Kraft, and W. G. Zeier, On the underestimated influence of synthetic conditions in solid ionic conductors, Chem. Sci., 12, 6238-6263 (2021).   DOI
6 Y.-C. Ha, S.-M. Lee, B. G. Kim, G. Park, J.-W. Park, J. Park, J.-H. Yu, W.-J. Lee, Y.-J. Lee, and H. Choi, Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid battery comprising the same, WO Patent PCT/KR2022/000464 (2022).
7 A. Miura, N. C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N. H. H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3, 189-198 (2019).   DOI
8 M. Ghidiu, J. Ruhl, S. P. Culver, and W. G. Zeier, Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective, J. Mater. Chem. A, 7, 17735-17753 (2019).   DOI
9 Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4, J. Am. Chem. Soc., 135(3), 975-978 (2013).   DOI
10 K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li3PS4, Solid State Ion., 182(1), 53-58 (2011).   DOI
11 M. Calpa, H. Nakajima, S. Mori, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Formation mechanism of β-Li3PS4 through decomposition of complexes, Inorg. Chem., 60(10), 6964-6970 (2021).   DOI
12 K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(6), eaas9820 (2018).   DOI
13 A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103 (2017).   DOI
14 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater., 10, 682-686 (2011).   DOI
15 Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7(2), 627-631 (2014).   DOI
16 Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030 (2016).   DOI
17 C. Yu, Y. Li, M. Willans, Y. Zhao, K. R. Adair, F. Zhao, W. Li, S. Deng, J. Liang, M. N. Banis, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, Y. Huang, and X. Sun, Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping, Nano Energy, 69, 104396 (2020).   DOI
18 H.-J. Deiseroth, S.-T. Kong, M. Schlosser, and C. Reiner, Lithium argyrodite, WO Patent WO/2009/047254 (2009).
19 K. Terai, F. Utsuno, T. Umeki, M. Nakagawa, and H. Yamaguchi, Sulfide solid electrolyte, WO Patent WO/2018/047565 (2018).
20 T. Tsukasa, C. Takashi, and I. Takahiro, Sulfide-based solid electrolyte particles, WO Patent WO/2019/176895 (2019).
21 P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, and L. F. Nazar, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution, Angew. Chem. Int. Ed., 58(26), 8681-8686 (2019).   DOI
22 F. Marchini, B. Porcheron, G. Rousse, L. A. Blanquer, L. Droguet, D. Foix, T. Koc, M. Deschamps, and J. M. Tarascon, The hidden side of nanoporous β-Li3PS4 solid electrolyte, Adv. Energy Mater., 11(34), 2101111 (2021).   DOI
23 E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, and C. Liang, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc., 137(4), 1384-1387 (2015).   DOI
24 S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Drager, F. von Seggern, H. Sommer, and J. Janek, Li4PS4I: A Li+ superionic conductor synthesized by a solvent-based soft chemistry approach, Chem. Mater., 29(4), 1830-1835 (2017).   DOI
25 M. Calpa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process, RSC Adv., 7, 46499-46504 (2017).   DOI
26 S. Yubuchi, A. Hayashi, and M. Tatsumisago, Application to all-solid-state batteries with Li6PS5Br electrolyte prepared by a liquid-phase technique, Meet. Abstr., MA2016-02, 3982 (2016).   DOI
27 S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, and M. Tatsumisago, An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol, J. Mater. Chem. A, 7, 558-566 (2019).   DOI
28 M.-J. Kim, I.-H. Choi, S. C. Jo, B. G. Kim, Y.-C. Ha, S.-M. Lee, S. Kang, K.-J. Baeg, and J.-W. Park, A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes, Small Methods, 5(11), 2100793 (2021).   DOI
29 K. Yamamoto, M. Takahashi, K. Ohara, N. H. H. Phuc, S. Yang, T. Watanabe, T. Uchiyama, A. Sakuda, A. Hayashi, M. Tatsumisago, H. Muto, A. Matsuda, and Y. Uchimoto, Synthesis of sulfide solid electrolytes through the liquid phase: optimization of the preparation conditions, ACS Omega, 5(40), 26287-26294 (2020).   DOI
30 M. Calpa, N. C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, and K. Tadanaga, Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents, Chem. Mater., 32(22), 9627-9632 (2020).   DOI
31 F. M. Delnick, G. Yang, E. C. Self, H. M. Meyer III, and J. Nanda, Investigation of complex intermediates in solvent-mediated synthesis of thiophosphate solid-state electrolytes, J. Phys. Chem. C, 124(50), 27396-27402 (2020).   DOI
32 M. S. Ziegler and J. E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline, Energy Environ. Sci., 14(4), 1635-1651 (2021).   DOI
33 S.-J. Choi, S.-H. Lee, Y.-C. Ha, J.-H. Yu, C.-H. Doh, Y. Lee, J.-W. Park, S.-M. Lee, and H.-C. Shin, Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries, J. Electrochem. Soc., 165, A957-A962 (2018).   DOI
34 S.-J. Choi, S.-H. Choi, A. D. Bui, Y.-J. Lee, S.-M. Lee, H.-C. Shin, and Y.-C. Ha, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10(37), 31404-31412 (2018).   DOI
35 A. D. Bui, S.-H. Choi, H. Choi, Y.-J. Lee, C.-H. Doh, J.-W. Park, B. G. Kim, W.-J. Lee, S.-M. Lee, and Y.-C. Ha, Origin of the outstanding performance of dual halide doped Li7P2S8X (X = I, Br) solid electrolytes for all-solid-state lithium batteries, ACS Appl. Energy Mater., 4(1), 1-8 (2021).
36 L. Zhou, K.-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, and L. F. Nazar, Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4(1), 265-270 (2019).   DOI
37 K. Oh, D. Chang, B. Lee, D.-H. Kim, G. Yoon, I. Park, B. Kim, and K. Kang, Native defects in Li10GeP2S12 and their effect on lithium diffusion, Chem. Mater., 30(15), 4995-5004 (2018).   DOI
38 W. D. Jung, J.-S. Kim, S. Choi, S. Kim, M. Jeon, H.-G. Jung, K. Y. Chung, J.-H. Lee, B.-K. Kim, J.-H. Lee, and H. Kim, Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth, Nano Lett., 20(4), 2303-2309 (2020).   DOI
39 X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang, H. Liu, M. Immediato-Scuotto, and Y.-Y. Hu, Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6-xPS5-xCl1+x, Energy Storage Mater., 30, 67-73 (2020).   DOI