• Title/Summary/Keyword: nitrogen-doping

Search Result 147, Processing Time 0.021 seconds

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

Synthesis of Nitrogen-Doped Graphene by Thermal Annealing of Graphene Oxide with Melamine Compounds (멜라민 화합물을 이용한 산화 그래핀 도핑 및 특성 평가)

  • Kim, Sumin;Kim, Hyun;Kim, So Yang;Han, Jong Hun
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.677-683
    • /
    • 2019
  • In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over $800{\sim}1,000^{\circ}C$ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.

Graphene Doping by Ammonia Plasma Surface Treatment (암모니아 플라즈마 표면처리를 통한 그래핀의 질소도핑)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.163-168
    • /
    • 2015
  • Graphene has attracted much attention due to its remarkable physical properties and potential applications in many fields. In special, the electronic properties of graphene are influenced by the number of layer, stacking sequence, edge state, and doping of foreign elements. Recently, many efforts have been dedicated to alter the electronic properties by doping of various species, such as hydrogen, oxygen, nitrogen, ammonia and etc. Here, we report our recent results of plasma doping on graphene. We prepared mechanically exfoliated graphene, and performed the plasma treatment using ammonia gas for nitrogen doping. The direct-current plasma system was used for plasma ignition. The doping level was estimated from the number of peak shift of G-band in Raman spectra. The upshift of G-band was observed after ammonia plasma treatment, which implies electron doping to graphene.

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Simultaneous Analysis of Stimulants and Narcotic Analgesics by Capillary Column Gas Chromatography with Nitrogen Phosphorus Detector (Capillary Column Gas Chromatography/Nitrogen Phosphorus Detector를 이용한 흥분제 및 마약성 진통제의 동시분석에 관한 연구)

  • Lho, Dong-Seok;Shin, Ho-Sang;Kang, Bo-Kyung;Paek, Heang-Kee;Kim, Seung-Ki;Lee, Jeong-Ae;Kim, Young-Lim;Park, Jong-Sei
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.659-666
    • /
    • 1991
  • A systematic analysis of 18 stimulants and narcotic analgesics containing nitrogen atom (s) in human urine by gas chromatography with nitrogen phosphorus detector (GC-NPD), is described. The urinary extract with diethyl ether at pH 8.5 showed good recoveries of the drugs and less interference peaks on GC chromatogram. Retention data were standardized by the calculation of relative retention times using diphenylamine as the internal standard. The relative standard deviations of retention times were less than 0.1% for the within-run analyses. The response factor (RRF) of a drug relative to the internal standard was calculated. RRF decreased with increasing number of nitrogen atoms. This technique can be adapted to various analytical toxicology problems.

  • PDF

The Characteristics of $GaAs_{0.35}P_{0.65}$ Epitaxial Layer According to in-situ doping of $NH_3$ gas (In-situ $NH_3$ doping에 따른 $GaAs_{0.35}P_{0.65}$ 에피막의 특성)

  • Lee, Eun-Cheol;Lee, Cheol-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1249-1251
    • /
    • 1998
  • We have studied the properties of $GaAs_{0.35}P_{0.65}$ epitaxial films on the GaP according to doping of $NH_3$ gas using VPE method by CVD. The efficiency of $GaAs_{0.35}P_{0.65}$ epitaxial films found to be greatly enhanced by the according of nitrogen doping. The diodes were fabricated by means of Zn diffusion into vapor grown $GaAs_{0.35}P_{0.65}$ epitaxial films doped with N and Te. The effects of nitrogen doping on carrier density of epitaxial films, PL wavelength and the power out, forward voltage of diodes are discussed. In the end, The effect of electrical and optical properties is influenced by the deep level and deep level density of nitrogen doping.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Evaluation of Slip and Strength of Nitrogen doped P/P- Epitaxial Silicon Wafers (질소 도핑된 P/P- Epitaxial Silicon Wafer의 Slip 및 강도 평가)

  • Choi Eun-Suck;Bae So-Ik
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.313-317
    • /
    • 2005
  • The relation between bulk microdefect (BMD) and mechanical strength of $P/P^-$ epitaxial silicon wafers (Epitaxial wafer) as a function of nitrogen concentrations was studied. After 2 step anneal$(800^{\circ}C/4hrs+1000^{\circ}C/16hrs)$, BMD was not observed in nitrogen undoped epitaxial silicon wafer while BMD existed and increased up to $3.83\times10^5\;ea/cm^2$ by addition of $1.04\times10^{14}\;atoms/cm^3$ nitrogen doping. The slip occurred for nitrogen undoped and low level nitrogen doped epitaxial wafers. However, there was no slip occurrence above $7.37\times10^{13}\;atoms/cm^3$ nitrogen doped epitaxial wafer. Mechanical strength was improved from 40 to 57 MPa as nitrogen concentrations were increased. Therefore, the nitrogen doping in silicon wafer plays an important role to improve BMD density, slip occurrence and mechanical strength of the epitaxial silicon wafers.

Characterization of Silver Saturated-Ge45Te55 Solid Electrolyte Films Incorporated by Nitrogen for Programmable Metallization Cell Memory Device

  • Lee, Soo-Jin;Yoon, Soon-Gil;Yoon, Sung-Min;Yu, Byoung-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The crystallization temperature in GeTe solid electrolyte films was improved by in situ-nitrogen doping by rf magnetron co-sputtering technique at room temperature. The crystallization temperature of $250\;^{\circ}C$ in electrolyte films without nitrogen doping increased by approximately $300\;^{\circ}C$, $350\;^{\circ}C$, and above $400\;^{\circ}C$ in films deposited with nitrogen/argon flow ratios of 10, 20, and 30 %, respectively. A PMC memory device with $Ge_{45}Te_{55}$ solid electrolytes deposited with nitrogen/argon flow ratios of 20 % shows reproducible memory switching characteristics based on resistive switching at threshold voltage of 1.2 V with high $R_{off}/R_{on}$ ratios. Nitrogen doping into the silver saturated GeTe electrolyte films improves the crystallization temperature of electrolyte films and does not appear to have a negative impact on the switching characteristics of PMC memory devices.