DOI QR코드

DOI QR Code

암모니아 플라즈마 표면처리를 통한 그래핀의 질소도핑

Graphene Doping by Ammonia Plasma Surface Treatment

  • 이병주 (강원대학교 대학원 신소재공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Lee, Byeong-Joo (Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Jeong, Goo-Hwan (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 투고 : 2015.08.21
  • 심사 : 2015.08.26
  • 발행 : 2015.08.31

초록

Graphene has attracted much attention due to its remarkable physical properties and potential applications in many fields. In special, the electronic properties of graphene are influenced by the number of layer, stacking sequence, edge state, and doping of foreign elements. Recently, many efforts have been dedicated to alter the electronic properties by doping of various species, such as hydrogen, oxygen, nitrogen, ammonia and etc. Here, we report our recent results of plasma doping on graphene. We prepared mechanically exfoliated graphene, and performed the plasma treatment using ammonia gas for nitrogen doping. The direct-current plasma system was used for plasma ignition. The doping level was estimated from the number of peak shift of G-band in Raman spectra. The upshift of G-band was observed after ammonia plasma treatment, which implies electron doping to graphene.

키워드

참고문헌

  1. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 8 (2008) 3498. https://doi.org/10.1021/nl802558y
  2. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321 (2008) 385. https://doi.org/10.1126/science.1157996
  3. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 6 (2007) 652. https://doi.org/10.1038/nmat1967
  4. W. H. Shin, H. M. Jeong, B. G. Kim, J.K. Kang, J. W. Choi, Nano Lett. 12 (2012) 2283. https://doi.org/10.1021/nl3000908
  5. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458 (2009) 877. https://doi.org/10.1038/nature07919
  6. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131 (2009) 15939. https://doi.org/10.1021/ja907098f
  7. Y. C. Lin, C. Y. Lin, P. W. Chiu, Appl. Phys. Lett. 96 (2010) 133110. https://doi.org/10.1063/1.3368697
  8. Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, ACS Nano 4 (2010) 1790. https://doi.org/10.1021/nn100315s
  9. B. J. Lee, G. H. Jeong, Appl. Phys. A 116 (2014) 15.
  10. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  11. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 473 (2009) 51. https://doi.org/10.1016/j.physrep.2009.02.003
  12. M. A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley Interscience (1994).
  13. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98 (2007) 166802. https://doi.org/10.1103/PhysRevLett.98.166802
  14. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Nanotechnol. 3 (2008) 210. https://doi.org/10.1038/nnano.2008.67
  15. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91 (2007) 241907. https://doi.org/10.1063/1.2816262
  16. Y. Nakayama, F. Soeda, A. Ishitani, Carbon 28 (1990) 21. https://doi.org/10.1016/0008-6223(90)90088-G

피인용 문헌

  1. Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction vol.49, pp.1, 2016, https://doi.org/10.5695/JKISE.2016.49.1.87