Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.11.677

Synthesis of Nitrogen-Doped Graphene by Thermal Annealing of Graphene Oxide with Melamine Compounds  

Kim, Sumin (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Kim, Hyun (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Kim, So Yang (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University)
Han, Jong Hun (School of Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.11, 2019 , pp. 677-683 More about this Journal
Abstract
In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over $800{\sim}1,000^{\circ}C$ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.
Keywords
graphene; doping; nitrogen; thermal annealing; n-doped;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A., 102, 10451 (2005).   DOI
2 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).   DOI
4 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6, 652 (2007).   DOI
5 Y. Zhang, J. P. Small, W. V. Pontius and P. Kima, Appl. Phys. Lett., 86, 073104 (2005).   DOI
6 H. Mortensen, Y. Kusano, F. Leipold, N. Rozlosnik, P. Kingshott, S. Goutianos, B. F. Sorensen, B. Stenum and H. Bindslev, Jpn. J. Appl. Phys., 45, 8506 (2006).   DOI
7 I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, Nano Lett., 8, 4283 (2008).   DOI
8 H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).   DOI
9 S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Carbon, 44, 3342 (2006).   DOI
10 X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008).   DOI
11 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2008).   DOI
12 X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, J. Am. Chem. Soc., 133, 2816 (2011).   DOI
13 C. Mattevi, H. Kim and M. Chhowalla, J. Mater. Chem., 21, 3324 (2011).   DOI
14 P. W. Sutter, J.-I. Flege and E. A. Sutter, Nat. Mater., 7, 406 (2008).   DOI
15 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Science, 312, 1191 (2006).   DOI
16 L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
17 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett., 9, 1752 (2009).   DOI
18 B. Guo, L. Fang, B. Zhang and J. R. Gong, Insciences J., 1, 80 (2011).
19 X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.?M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, Adv. Funct. Mater., 22, 2682 (2012).   DOI
20 A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, ACS Nano, 4, 3839 (2010).   DOI
21 D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun and X. Bao, Chem. Mater., 23, 1188 (2011).   DOI
22 Y. Wang, Y. Shao, D. W. Matson, J. Li and Y. Lin, ACS Nano, 4, 1790 (2010).   DOI
23 S. Y. Zhou, D. A. Siegel, A. V. Fedorov and A. Lanzara, Phys. Rev. Lett., 101, 086402 (2008).   DOI
24 W. Chen, S. Chen, D. C. Qi, X. Y. Gao and A. T. S. Wee, J. Am. Chem. Soc., 129, 10418 (2007).   DOI
25 L. T. Soo, K. S. Loh, A. B. Mohamad, W. R. W. Daud and W. Y. Wong, J. Alloys Compd., 677, 112 (2016).   DOI
26 Z. Lin, G. Waller, Y. Liu, M. Liu and C.-P. Wong, Adv. Energy Mater., 2, 884 (2012).   DOI
27 Z. Lin, M.-K. Song, Y. Ding, Y. Liu, M. Liu and C.-P. Wong, Phys. Chem. Chem. Phys., 14, 3381 (2012).   DOI
28 Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang and X.-H. Xia, Acs Nano, 5, 4350 (2011).   DOI
29 S. Pei and H.-M. Cheng, Carbon, 50, 3210 (2012).   DOI
30 L. Costa and G. Camino, J. Therm. Anal., 34, 423 (1988).   DOI
31 D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye and S. Knights, Appl. Surf. Sci., 257, 9193 (2011).   DOI
32 F. Kapteijn, J. A. Moulijn, S. Matzner and H.-P. Boehm, Carbon, 37, 11430 (1999).
33 H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. W. Choi, Nano Lett., 11, 2472 (2011).   DOI