DOI QR코드

DOI QR Code

Synthesis of Nitrogen-Doped Graphene by Thermal Annealing of Graphene Oxide with Melamine Compounds

멜라민 화합물을 이용한 산화 그래핀 도핑 및 특성 평가

  • Kim, Sumin (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Kim, Hyun (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Kim, So Yang (Department of Advanced Chemicals & Engineering, Graduate School Chonnam National University) ;
  • Han, Jong Hun (School of Chemical Engineering, Chonnam National University)
  • 김수민 (전남대학교 일반대학원 신화학소재공학과) ;
  • 김현 (전남대학교 일반대학원 신화학소재공학과) ;
  • 김소양 (전남대학교 일반대학원 신화학소재공학과) ;
  • 한종훈 (전남대학교 공과대학 화학공학부 및 광전자융합연구소)
  • Received : 2019.09.11
  • Accepted : 2019.10.06
  • Published : 2019.11.27

Abstract

In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over $800{\sim}1,000^{\circ}C$ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  3. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A., 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6, 652 (2007). https://doi.org/10.1038/nmat1967
  5. Y. Zhang, J. P. Small, W. V. Pontius and P. Kima, Appl. Phys. Lett., 86, 073104 (2005). https://doi.org/10.1063/1.1862334
  6. H. Mortensen, Y. Kusano, F. Leipold, N. Rozlosnik, P. Kingshott, S. Goutianos, B. F. Sorensen, B. Stenum and H. Bindslev, Jpn. J. Appl. Phys., 45, 8506 (2006). https://doi.org/10.1143/JJAP.45.8506
  7. I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, Nano Lett., 8, 4283 (2008). https://doi.org/10.1021/nl8019938
  8. H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006). https://doi.org/10.1021/jp060936f
  9. S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Carbon, 44, 3342 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
  10. X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 319, 1229 (2008). https://doi.org/10.1126/science.1150878
  11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2008). https://doi.org/10.1021/nl801827v
  12. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, J. Am. Chem. Soc., 133, 2816 (2011). https://doi.org/10.1021/ja109793s
  13. C. Mattevi, H. Kim and M. Chhowalla, J. Mater. Chem., 21, 3324 (2011). https://doi.org/10.1039/C0JM02126A
  14. P. W. Sutter, J.-I. Flege and E. A. Sutter, Nat. Mater., 7, 406 (2008). https://doi.org/10.1038/nmat2166
  15. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Science, 312, 1191 (2006). https://doi.org/10.1126/science.1125925
  16. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
  17. B. Guo, L. Fang, B. Zhang and J. R. Gong, Insciences J., 1, 80 (2011).
  18. X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.?M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, Adv. Funct. Mater., 22, 2682 (2012). https://doi.org/10.1002/adfm.201103110
  19. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, ACS Nano, 4, 3839 (2010). https://doi.org/10.1021/nn100508g
  20. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett., 9, 1752 (2009). https://doi.org/10.1021/nl803279t
  21. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun and X. Bao, Chem. Mater., 23, 1188 (2011). https://doi.org/10.1021/cm102666r
  22. Y. Wang, Y. Shao, D. W. Matson, J. Li and Y. Lin, ACS Nano, 4, 1790 (2010). https://doi.org/10.1021/nn100315s
  23. S. Y. Zhou, D. A. Siegel, A. V. Fedorov and A. Lanzara, Phys. Rev. Lett., 101, 086402 (2008). https://doi.org/10.1103/PhysRevLett.101.086402
  24. W. Chen, S. Chen, D. C. Qi, X. Y. Gao and A. T. S. Wee, J. Am. Chem. Soc., 129, 10418 (2007). https://doi.org/10.1021/ja071658g
  25. L. T. Soo, K. S. Loh, A. B. Mohamad, W. R. W. Daud and W. Y. Wong, J. Alloys Compd., 677, 112 (2016). https://doi.org/10.1016/j.jallcom.2016.03.214
  26. Z. Lin, G. Waller, Y. Liu, M. Liu and C.-P. Wong, Adv. Energy Mater., 2, 884 (2012). https://doi.org/10.1002/aenm.201200038
  27. Z. Lin, M.-K. Song, Y. Ding, Y. Liu, M. Liu and C.-P. Wong, Phys. Chem. Chem. Phys., 14, 3381 (2012). https://doi.org/10.1039/c2cp00032f
  28. S. Pei and H.-M. Cheng, Carbon, 50, 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
  29. L. Costa and G. Camino, J. Therm. Anal., 34, 423 (1988). https://doi.org/10.1007/BF01913181
  30. Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang and X.-H. Xia, Acs Nano, 5, 4350 (2011). https://doi.org/10.1021/nn103584t
  31. D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye and S. Knights, Appl. Surf. Sci., 257, 9193 (2011). https://doi.org/10.1016/j.apsusc.2011.05.131
  32. F. Kapteijn, J. A. Moulijn, S. Matzner and H.-P. Boehm, Carbon, 37, 11430 (1999).
  33. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. W. Choi, Nano Lett., 11, 2472 (2011). https://doi.org/10.1021/nl2009058