• Title/Summary/Keyword: nilpotent Lie group

Search Result 12, Processing Time 0.021 seconds

A STUDY ON NILPOTENT LIE GROUPS

  • Nam, Jeong-Koo
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.137-148
    • /
    • 1998
  • We briefly discuss the Lie groups, it's nilpotency and representations of a nilpotent Lie groups. Dixmier and Kirillov proved that simply connected nilpotent Lie groups over $\mathbb{R}$ are monomial. We reformulate the above result at the Lie algebra level.

  • PDF

AUTOMORPHISMS OF UNIFORM LATTICES OF NILPOTENT LIE GROUPS UP TO DIMENSION FOUR

  • Lee, Jong Bum;Lee, Sang Rae
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.653-666
    • /
    • 2020
  • In this paper, when G is a connected and simply connected nilpotent Lie group of dimension less than or equal to four, we study the uniform lattices Γ of G up to isomorphism and then we study the structure of the automorphism group Aut(Γ) of Γ from the viewpoint of splitting as a natural extension.

NILPOTENCY OF THE RICCI OPERATOR OF PSEUDO-RIEMANNIAN SOLVMANIFOLDS

  • Huihui An;Shaoqiang Deng;Zaili Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.867-873
    • /
    • 2024
  • A pseudo-Riemannian solvmanifold is a solvable Lie group endowed with a left invariant pseudo-Riemannian metric. In this short note, we investigate the nilpotency of the Ricci operator of pseudo-Riemannian solvmanifolds. We focus on a special class of solvable Lie groups whose Lie algebras can be expressed as a one-dimensional extension of a nilpotent Lie algebra ℝD⋉n, where D is a derivation of n whose restriction to the center of n has at least one real eigenvalue. The main result asserts that every solvable Lie group belonging to this special class admits a left invariant pseudo-Riemannian metric with nilpotent Ricci operator. As an application, we obtain a complete classification of three-dimensional solvable Lie groups which admit a left invariant pseudo-Riemannian metric with nilpotent Ricci operator.

RADICALS OF A LEFT-SYMMETRIC ALGEBRA ON A NILPOTENT LIE GROUP

  • Chang, Kyeong-Soo;Kim, Hyuk;Lee, Hyun-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.359-369
    • /
    • 2004
  • The purpose of this paper is to compare the radicals of a left symmetric algebra considered in 〔1〕 when the associated Lie algebra is nilpotent. In this case, we show that all the radicals considered there are equal. We also consider some other radicals and show they are also equal.

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF

The Real Rank of CCR C*-Algebra

  • Sudo, Takahiro
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.223-232
    • /
    • 2008
  • We estimate the real rank of CCR C*-algebras under some assumptions. A applications we determine the real rank of the reduced group C*-algebras of non-compac connected, semi-simple and reductive Lie groups and that of the group C*-algebras of connected nilpotent Lie groups.

RIEMANNIAN SUBMERSIONS OF SO0(2, 1)

  • Byun, Taechang
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1407-1419
    • /
    • 2021
  • The Iwasawa decomposition NAK of the Lie group G = SO0(2, 1) with a left invariant metric produces Riemannian submersions G → N\G, G → A\G, G → K\G, and G → NA\G. For each of these, we calculate the curvature of the base space and the lifting of a simple closed curve to the total space G. Especially in the first case, the base space has a constant curvature 0; the holonomy displacement along a (null-homotopic) simple closed curve in the base space is determined only by the Euclidean area of the region surrounded by the curve.