# ON CONJUGATE POINTS OF THE GROUP $H(2,1)$ 

Changrim Jang*, Keun Park, and Taehoon Lee


#### Abstract

Let $\mathbf{n}$ be a 2-step nilpotent Lie algebra which has an inner product $\langle$,$\rangle and has an orthogonal decomposition \mathfrak{n}=\mathfrak{z} \oplus \mathfrak{v}$ for its center $\mathfrak{z}$ and the orthogonal complement $\mathfrak{v}$ of $\mathfrak{z}$. Then Each element $Z$ of 3 defines a skew symmetric linear map $J_{Z}: \mathfrak{0} \longrightarrow \mathrm{o}$ given by $\left\langle J_{Z} X, Y\right\rangle=\langle Z,[X, Y]\rangle$ for all $X, Y \in \mathfrak{n}$. Let $\gamma$ be a unit speed geodesic in a 2 -step nilpotent Lie group $H(2,1)$ with its Lie algebra $n(2,1)$ and let its initial velocity $\gamma^{\prime}(0)$ be given by $\gamma^{\prime}(0)=Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}=\mathfrak{n}(\underline{2}, 1)$ with its center component $Z_{0}$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma\left(\frac{2 n \pi}{\theta}\right)$, where $n$ is a nonzero intger and $-\theta^{2}$ is a nonzero eigenvalue of $J_{Z_{0}}^{2}$, along $\gamma$ if and only if either $X_{0}$ is an eigenvector of $J_{Z_{o}}^{2}$ or $\operatorname{ad} X_{0}: \mathfrak{v} \longrightarrow z$ is not surjective.


## 1. Introduction

Let $\mathbf{n}$ denote a finite dimensional Lie algebra over the real numbers. The Lie algebra $\boldsymbol{n}$ is called 2-step nilpotent Lie algebra if $[X,[Y, Z]]=0$ for any $X, Y, Z \in \mathfrak{n}$. A Lie group $N$ is said to be 2 -step nilpotent if its Lie algebra $\mathfrak{n}$ is 2 -step nilpotent. Throughout, $N$ will denote a simply connected, 2-step nilpotent Lie group with Lie algebra $n$ having center $\mathfrak{z}$. We shall use $\langle$,$\rangle to denote either an inner product on \mathfrak{n}$ or the induced left-invariant Riemannian metric tensor on $N$. Let $\mathfrak{v}$ denote the orthogonal complement of $\mathfrak{z}$ in $\mathbf{n}$.

Each element $Z$ of $\mathfrak{z}$ defines a skew symmetric linear map $J_{Z}: \mathfrak{v} \longrightarrow$ $\mathfrak{v}$ given by $J_{Z}(X)=(\operatorname{ad} X)^{*}(Z)$ for all $X \in \mathfrak{v}$, where $(\operatorname{ad} X)^{*}$ is the

[^0]adjoint of ad $X$ relative to the inner product $\langle$,$\rangle . Equivalently and$ more usefuly $J_{Z}$ is defined by the equation
$$
\left\langle J_{Z}(X), Y\right\rangle=\langle[X, Y], Z\rangle
$$
for all $X, Y \in \mathfrak{v}$. One of simple examples of such groups is the 3dimensional Heisenberg group $H_{3}$ with its Lie algebra $\mathfrak{n}_{3}$ with an orthornomal basis $X, Y, Z$. and with the only nonzero bracket operations $[X, Y]=-[Y, Z]=Z$. The group $H_{3}$ may be generalized in the different two ways: $H$-type groups and groups $H(p, q)$. A 2-step nilpotent Lie group $N$ with its Lie algebra $\mathfrak{n}$ is called $H$-type if it satisfies
$$
J_{Z}^{2}=-\langle Z, Z\rangle I \text { for all } Z \in \mathfrak{\mathfrak { j }} .
$$

And The group $H(p, q)$ is defined as the simply connected 2 -step nilpotent Lie group whose Lie algebra $n(p, q)$ of dimension $p+q+p q$ has an orthonoramal basis
$\left\{X_{1}, X_{2}, \cdots, X_{p}\right\} \cup\left\{Y_{1}, Y_{2}, \cdots, Y_{q}\right\} \cup\left\{Z_{i j} \mid i=1, \cdots, p, j=1, \cdots, q\right\}$.
In $\mathfrak{n}(p, q)$, the bracket operations are given by

$$
\left[X_{i}, Y_{j}\right]=-\left[X_{i}, Y_{j}\right]=Z_{i j}
$$

for all $i=1, \cdots, p$ and $j=1, \cdots, q$ and all other brackets are zero. The first general studies for 2 -step nilpotent Lie groups were done by P.Eberlein [1][2] and some works about conjugate points in 2-step nilpotent Lie groups followed. Especially, in 1997, Walschap showed [11] that for a nonsingular 2-step nilpotent Lie group with one dimensional center, the cut locus and the conjugate locus coincide, and he made an explicit determination of all first conjugate points in such a group. Gornet and Mast showed [3] that the first cut point of the starting point $\gamma(0)$ along a unit speed geodesic $\gamma$ with initial velocity $\gamma^{\prime}(0)=X_{0}+Z_{0}$ for $X_{0} \in \mathfrak{v}$ and $Z_{0} \in \mathfrak{z}$ in a simply connected 2-step nilpotent Lie group $N$ does not occur before length $\frac{2 \pi}{\theta(Z)}$, where $\theta(Z)$ is the biggest of the norms of the eigenvalues of the skew-symmetric map $J_{z}$. Jang and Park later gave explicit formulas for all conjugate points along geodesics in any 2 -step nilpotent Lie groups with one dimensional center [5]. And J. Kim [8] calculated all conjugate points of $H$-type groups. These last two works are generalized in a pseudo-Riemmannian version by Jang, Parker and Park[6][7]. Lee[10]
considered a class of 2-step nilpotent Lie groups $(N,\langle\rangle$,$) satisfying the$ following more general condition

$$
\begin{equation*}
J_{Z}^{2}=\langle S Z, Z\rangle A \text { for all } Z \in \mathfrak{z} \tag{1.1}
\end{equation*}
$$

where $S$ is a positive definite symmetric operator on $\mathfrak{z}$ and $A$ is a negative defnite symmetric operator on $\mathfrak{v}$ and calculated all conjugate points for these groups. Note that this class of 2 -step nilpotent Lie groups contains all groups with one dimensional center and all H type groups. A result of Gornet and Mast mentioned above tells that along a geodesic $\gamma$ in a 2-step nilpotent Lie group $N$ with initial velocity $\gamma^{\prime}(0)=Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}, Z_{0} \neq 0$ there no conjugate point occurs before length $\frac{2 \pi}{\theta(Z)}$, where $\theta(Z)$ is the biggest of the norms of the eigenvalues of the skew-symmetric map $J_{Z}$. But in most important cases including groups satisfying (1.1), we can see that such geodesics have its first conjugate point at length $\frac{2 \pi}{\theta(z)}$, where $\theta(z)$ is the biggest of the norms of the eigenvalues of the skew-symmetric map $J_{Z}$. This leads to the question that "Does every geodesic in a 2 -step nilpotent Lie group with initial velocty of nonzero center component have its first conjugate point at length $\frac{2 \pi}{\theta(Z)}$, where $\theta(Z)$ is the biggest of the norms of the eigenvalues of the skew-symmetric map $J_{Z}$ ?" In this paper we investigated some conjugate points in the group $H(2,1)$ and found that in some geodesics with initial velocity of nonzero center component the first conjugate point does not occur at length $\frac{2 \pi}{\theta(Z)}$, where $\theta(Z)$ is the biggest of the norms of the eigenvalues of the skew-symmetric map $J_{Z}$ . To study conjugate points, we use the Jacobi operator.

Definition 1.1. Along the geodesic $\gamma$, the Jacobi operator is given by

$$
R_{\dot{\gamma}} \cdot=R(\cdot, \dot{\gamma}) \dot{\gamma}
$$

where $R$ denotes the Riemmannian curvature tensor.
For the reader's convenience, we recall that a Jacobi field along $\gamma$ is a vector field along $\gamma$ which is a solution of the Jacobi equation

$$
\nabla_{\dot{\gamma}}^{2} Y(t)+R_{\dot{\gamma}} Y(t)=0
$$

along $\gamma$, where $\nabla$ denotes the Riemannian connection. The point $\gamma\left(t_{0}\right)$ is conjugate to the point $\gamma(0)$ if and only if there exists a nontrivial

Jacobi field $Y$ along $\gamma$ such that $Y(0)=Y\left(t_{0}\right)=0$. The multiplicity of $\gamma\left(t_{0}\right)$ is equal to the number of lineary independent of Jacobi fields $Y(t)$ with $Y(0)=Y\left(t_{0}\right)=0$. We will identify an element of $\mathbf{n}$ with a left invariant vector field on $N$ since $T_{e} N$ may be identified with $\mathbf{n}$, where $e$ denotes the identity element of $N$. Since $N$ is endowed with a left invariant metric, we will only consider Jacobi fields and conjugate points along geodesics emanating from the identity element of $N$. For the reader's convenience, we provide the statement of Proposition 2.1 from [6].

Proposition 1.2. Let $\gamma$ be a geodesic in a simply connected 2 -step nilpotent group $N$ with $\gamma(0)=e$ and $\dot{\gamma}(0)=Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}=\mathfrak{n}$. A vector field $Y(t)=Z(t)+e^{t J} U(t)$ along $\gamma$, where $Z(t) \in \mathfrak{z}$ and $U(t) \in \mathfrak{v}$ for each $t$, is a Jacobi field if and only if

$$
\begin{align*}
\dot{Z}(t)-\left[e^{t J} U(t), e^{t J} X_{0}\right] & =\zeta,  \tag{1.2}\\
e^{t J} \ddot{U}(t)+e^{t J} J \dot{U}(t)-J_{\zeta} e^{t J} X_{0} & =0, \tag{1.3}
\end{align*}
$$

where $J=J_{Z_{0}}$ and $\zeta \in \mathfrak{z}$ is a constant.

## 2. Conjugate points of $H(2,1)$

We may assume that the Lie algebra $\mathfrak{n}(2,1)$ is spanned by an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\} \cup\left\{Z_{1}, Z_{2}\right\}$ and the only nonzero brackets are

$$
\left[X_{1}, X_{3}\right]=-\left[X_{3}, X_{1}\right]=Z_{1},\left[X_{2}, X_{3}\right]=-\left[X_{3}, X_{2}\right]=Z_{2} .
$$

Let $H(2,1)$ be a simply comected two step nilpotent Lie group with its Lie algebra $\mathfrak{n}(2,1)$ and let $\gamma$ be a unit geodesic in $H(2,1)$ such that $\gamma(0)=e, \dot{\gamma}(0)=X_{0}+Z_{0} \in \mathfrak{v} \oplus \mathfrak{z}=\mathfrak{n}(2,1)$ and $Z_{0} \neq 0$. Then without loss of generality we may work under the assumption $Z_{0}=\theta Z_{1}$ for a nonzero constant $\theta$ and $X_{0}=x_{01} X_{1}+x_{02} X_{2}+x_{03} X_{3}$ for constants $x_{01}, x_{02}, x_{03}$. Suppose that a vector field $Y(t)=Z(t)+e^{t J} U(t)$ is a Jacobi field along $\gamma$, where $J=J_{Z_{0}}$. Then by solving the equations (1.2) and (1.3) under the condotion $U(0)=0, Z(0)=0$ and $\zeta=$
$c \theta Z_{1}+\theta^{\prime} Z_{2}$, where $c$ and $\theta^{\prime}$ are constants, we have

$$
\begin{align*}
U(t)= & \left\{a_{1}(\cos t \theta-1)+a_{2} \sin t \theta+c t x_{01}-\frac{x_{02} \theta^{\prime}}{\theta} t \cos t \theta\right\} X_{1} \\
& +\left\{\frac{\theta^{\prime}}{\theta^{2}} x_{01} \sin t \theta+\frac{\theta^{\prime}}{\theta^{2}} x_{03}(\cos t \theta-1)+\alpha t\right\} X_{2} \\
& +\left\{-a_{1} \sin t \theta+a_{2}(\cos t \theta-1)+\frac{x_{02} \theta^{\prime}}{\theta} t \sin t \theta+c t x_{03}\right\} X_{3} \tag{2.1}
\end{align*}
$$

and

$$
\begin{aligned}
Z(t)= & \left\{\frac{1}{\theta}\left(a_{1} x_{03}-a_{2} x_{01}-\frac{1}{\theta^{2}} \theta^{\prime} x_{02} x_{01}\right) \sin t \theta\right. \\
& +\frac{1}{\theta}\left(a_{2} x_{03}+a_{1} x_{01}+\frac{1}{\theta^{2}} \theta^{\prime} x_{02} x_{03}\right)(1-\cos \theta) \\
& \left.+\frac{\theta^{\prime} x_{02}}{\theta^{2}} t\left(x_{03} \sin t \theta-x_{01} \cos t \theta\right)+\left(a_{2} x_{01}-a_{1} x_{03}\right) t+c \theta t\right\} Z_{1} \\
& +\left\{\alpha x_{01}\left(-\frac{t}{\theta} \cos t \theta+\frac{1}{\theta^{2}} \sin t \theta\right)+\alpha x_{03}\left(\frac{t}{\theta} \sin t \theta+\frac{1}{\theta^{2}}(\cos t \theta-1)\right)\right. \\
& +\frac{1}{\theta}\left(\frac{\theta^{\prime} x_{01} x_{03}}{\theta^{2}}-a_{1} x_{02}\right)(\cos t \theta-1)+\frac{1}{\theta}\left(a_{2} x_{02}-\frac{\theta^{\prime} x_{03}^{2}}{\theta^{2}}\right) \sin t \theta \\
& +\frac{\theta^{\prime}}{2 \theta^{2}}\left(x_{01}^{2}+x_{03}^{2}\right) t-a_{2} x_{02} t+\frac{\theta^{\prime}}{4 \theta^{3}} \sin 2 t \theta\left(x_{03}^{2}-x_{01}^{2}\right) \\
(2.2) & \left.-\frac{\theta^{\prime}}{2 \theta^{3}} x_{01} x_{03}(\cos 2 t \theta-1)+\theta^{\prime} t\right\} Z_{2},
\end{aligned}
$$

where $a_{1}, a_{2}$, and $\alpha$ are arbitrary constants. Suppose that $\gamma\left(t_{0}\right)$ is conjugate to $\gamma(0)$ along $\gamma$ and $t_{0}=\frac{2 n \pi}{\theta}$. Then we may assume that $U\left(\frac{2 n \pi}{\theta}\right)=0$ and $Z\left(\frac{2 n \pi}{\theta}\right)=0$ in (2.1) and (2.2). These conditions imply that

$$
\begin{gather*}
c x_{01}-\frac{x_{02} \theta^{\prime}}{\theta}=0  \tag{2.3}\\
\alpha=c x_{03}=0 \\
\frac{\theta^{\prime} x_{01} x_{02}}{\theta^{2}}+a_{2} x_{01}-a_{1} x_{03}+c \theta=0 \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\theta^{\prime}}{2 \theta^{2}}\left(x_{01}^{2}+x_{03}^{2}\right)-a_{2} x_{02}+\theta^{\prime}=0 \tag{2.5}
\end{equation*}
$$

Since $c x_{03}=0$, we can consider 2-cases: $x_{03} \neq 0$ or $x_{03}=0$. Suppose that $x_{03} \neq 0$. Then we have $c=0$, from which and (2.3) it follows that $x_{02} \theta^{\prime}=0$. Multiplying $\theta^{\prime}$ at both sides of (2.5), we have

$$
\frac{\theta^{\prime 2}}{2 \theta^{2}}\left(x_{01}^{2}+x_{03}^{2}\right)-a_{2} x_{02} \theta^{\prime}+\theta^{\prime 2}=0
$$

This and $x_{02} \theta^{\prime}=0$ imply

$$
\theta^{\prime 2}\left\{1+\frac{x_{01}^{2}+x_{03}^{2}}{2 \theta^{2}}\right\}=0
$$

which implies that $\theta^{\prime}=0$. Thus, if $x_{02} \neq 0$, then from $(2,3)$ we have $a_{2}=0$. This and (2.4) imply that $a_{1}=0$. So all constants in (2.1) and (2.2) are zero, which means that that $U(t) \equiv 0$ and $Z(t) \equiv 0$. In other words there is no nonzero Jacobi field $Y(t)$ along $\gamma$ which satisfies $Y(0)=Y\left(\frac{2 n \pi}{\theta}\right)$, which contradicts to the assumption $\gamma(0)$ is conjugate $\gamma\left(\frac{2 n \pi}{\theta}\right)$ along $\gamma$. Therefore we can conclude that if $x_{02} \neq 0$ and $x_{03} \neq 0$, then $\gamma(0)$ does not have conjugate points at $t=\frac{2 n \pi}{\theta}$. And if $x_{03} \neq 0$ and $x_{02}=0$, then we have $c=\alpha=\theta^{\prime}=0$ and $a_{1}=\frac{a_{2} x_{01}}{x_{03}}$ from equations (2.3)-(2.5) and $\alpha=c x_{03}=0$. This imply that if $x_{02}=0$ and $x_{03} \neq 0$, then $\gamma(0)$ has a conjugate point of multiplicity 1 at every $t=\frac{2 n \pi}{\theta}$. Now assume that $x_{03}=0$. Then from (2.4) we get

$$
c=-\frac{\theta^{\prime} x_{01} x_{02}}{\theta^{3}}-a_{2} \frac{x_{01}}{\theta} .
$$

Substituting this into (2.3), we find

$$
-\frac{\theta^{\prime} x_{01}^{2} x_{02}}{\theta^{3}}-a_{2} \frac{x_{01}^{2}}{\theta}-\frac{x_{02} \theta^{\prime}}{\theta}=0
$$

or

$$
\begin{equation*}
-\frac{\theta^{\prime} x_{01}^{2} x_{02}}{\theta^{2}}-a_{2} x_{01}^{2}-x_{02} \theta^{\prime}=0 \tag{2.6}
\end{equation*}
$$

From (2.5) and $x_{01}^{2}+x_{02}^{2}+\theta^{2}=1$, we find

$$
\theta^{\prime}=\frac{2 \theta^{2}}{1+\theta^{2}} a_{2} x_{02}
$$

Substituting this into (2.6), we get

$$
a_{2}\left\{\frac{2 \theta^{2} x_{02}^{2}}{1+\theta^{2}}\left(1+x_{01}^{2}\right)+x_{01}^{2}\right\}=0
$$

If $x_{01}^{2}+x_{02}^{2} \neq 0$, then we have $a_{2}=0$. From this $c=\theta^{\prime}=0$ follows. In this case $a_{1}$ in (2.1) and (2.2) is arbitrary. Suppose that $x_{01}=x_{02}=$ 0 , then we may assume $a_{1}$ and $a_{2}$ are arbitrary. Thus we have the following.

Proposition 2.1. Let $\gamma$ be a geodesic in a group $H(2,1)$ with $\gamma(0)=e$ and $\gamma(0)=Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}=\mathfrak{n}$ and $Z_{0} \neq 0$. Then for the nonzero eigen value $\theta$ of the map $J_{Z_{0}} \gamma(0)$ has its conjugate points at points $t=\frac{2 n \pi}{\theta}$ along $\gamma$ if and only if either $X_{0}$ is an eigenvector of $J^{2}=J_{Z_{0}}^{2}$ or the map ad $X_{0}: \mathfrak{v} \longrightarrow \boldsymbol{z}$ given by $\operatorname{ad} X_{0}(Y)=\left[X_{0}, Y\right]$ for $Y \in \mathfrak{v}$ is not surjective. The multiplicties of conjugate points are 1 (or 2) if $X_{0}$ is nozero (or zero).

In this paper we do not calculate all conjugate points of the group $H(2,1)$. But we show that if $x_{0}$ is an eigenvector of $J_{Z_{0}}^{2}$, then $\gamma(0)$ has conjugate points at some values of $t$ which are different from $\frac{2 n \pi}{\theta}$. Actually we will calculate under more general condition. First of all we need to recall the definition of Heigenberglike groups.

Definition 2.2. A two step nilpotent Lie group $N$ with its Lie algebra $n$ and a left invariant metric $\langle$,$\rangle is said to be Hesenberglike if$ it satisfies

$$
\left[X, J_{Z} X\right]=c Z
$$

where $c$ is a constant for all $Z \in \mathfrak{z}$ and any eigenvector $X$ of $J_{Z}^{2}$
Proposition 2.3. Let $N$ be a simply connected two step nilpotent Heigeberlike group with its Lie algebra $\mathfrak{n}$ and a leftinvariant metric. And let $\gamma$ be a unit spped geodesic in $N$ with initial velocity $\gamma^{\prime}(0)=$ $Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}=\mathfrak{n}$. Suppose that $X_{0}$ is an eigenvector of $J_{Z_{0}}^{2}$ with nonzero eigenvalue $-\theta^{2}$. Then $\gamma(0)$ has a conjugate point at every point $t$ contained in the set $\left\{t \left\lvert\,\left\langle X_{0}, X_{0}\right\rangle \frac{\theta t}{2} \cot \frac{\theta t}{2}=1\right.\right\}$.

Proof. For a number $t_{0}$ contained in $\left\{t \left\lvert\,\left\langle X_{0}, X_{0}\right\rangle \frac{\theta t}{2} \cot \frac{\theta t}{2}=1\right.\right\}$ let

$$
U(t)=c t X_{0}+\left(e^{-t J}-I\right)\left(e^{-t_{0} J}-I\right)^{-1}\left(c t_{0} X_{0}\right)
$$

and

$$
Z(t)=\alpha(t) Z_{0}
$$

for a constant $c$, where
$\alpha(t)=c t+\frac{\left\langle J X_{0},(-J)^{-1}\left(e^{t J}-I\right)\left(e^{-t_{0} J}-I\right)^{-1} c t_{0} X_{0}-t\left(e^{t_{0} J}-I\right)^{-1} c t_{0} X_{0}\right\rangle}{\left\langle Z_{0}, Z_{0}\right\rangle}$
Note that $J=J_{Z_{0}}$ is invertible on the eingenspace correspoinding the eigenvalue $\theta$. Then by a direct computation we can see that $U(t)$ and $Z(t)$ satisfy (1.2) and (1.3). Also we can confirm that $U(0)=U\left(t_{0}\right)=$ 0 and $Z(0)=Z\left(t_{0}\right)=0$.

Corollary 2.4. Let $\gamma$ be a unit spped geodesic in $H(2,1)$ with initial velocity $\gamma^{\prime}(0)=Z_{0}+X_{0} \in \mathfrak{z} \oplus \mathfrak{v}=\mathfrak{n}(2,1)$. Suppose that $X_{0}$ is an eigenvector of $J_{z_{0}}^{2}$ with nonzero eigenvalue $-\theta^{2}$. Then $\gamma(0)$ has a conjugate point at every point $t$ contained in the set $\left\{t \left\lvert\,\left\langle X_{0}, X_{0}\right\rangle \frac{\theta t}{2} \cot \frac{\theta t}{2}=\right.\right.$ $1\}$.

Proof. For nonzero vecotors $X \in \mathfrak{v}$ and $Z \in \mathfrak{z}$ in the Lie algebra $\mathfrak{n}(2,1)$ we can see easily that $\left[X, J_{Z} X\right]$ is a multiple of the vector $Z$ when the vector $X$ is an eigenvector of $J_{Z}^{2}$. So the conclusion follows from Proposition2.3.

## References

[1] P. Eberlein, Geometry of 2-step nilpotent Lie groups with a left invariant metric, Ann. Sci. Ecole Norm. Sup. 27 (1994) 611-660.
[2] P. Eberlein, Geometry of 2-step nilpotent Lie groups with a left invariant metric II, Trans. Amer. Math. Soc. 343 (1994) 805-828.
[3] Ruth Gornet and Maura B.Mast, Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds. J. Geom. Anal. 13 (2003) 107-143.
[4] C. Jang, J. Kim, Y. Kim, and K. Park, Conjugate points on the quaternionic Heisenberg group, J. Korean Math. Soc. 40 (2003) 61-72.
[5] C. Jang and K. Park, Conjugate points on 2-step nilpotent groups, Geom. Dedicata 79 (2000) 65-80.
[6] C. Jang and P.E. Parker, Conjugate loci of pseudoriemannian 2-step nilpotent Lie groups with nondegenerate center, Annals of Global Analysis and Geometry 28 (2005) 1-18
[7] C. Jang, P. E. Parker and K. Park, PseudoH-type 2-step nilpotent Lie groups, Houston J. Math 31 (2005) 765-786
[8] J. Kim, Conjugate points on groups of Heisenberg type, Doctoral Thesis , University of Ulsan, (2001).
[9] Y.Kim, Jacobi Fields and Conjugate Points on Modified $H$-type Groups, Doctoral Thesis, University of Ulsan, (2002).
[10] T.Lee, Jacobi Fields and Conjugate Loci of two-step nilpotent Lie groups satisfying $\left.J_{z}^{2}=\left\langle S_{z},\right\rangle\right\rangle A$, Doctoral Thesis, University of Ulsan, (2007).
[11] G. Walschap, Cut and conjugate loci in two-step nilpotent Lie groups, $J$. Geometric Anal. 7 (1997) 343-355.

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea crjang@ulsan.ac.kr

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea kpark@ulsan.ackr

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea mltsr@ulsan.ac.kr


[^0]:    Received November 27, 2006.
    2000 Mathematics Subject Classification: $53 \mathrm{C} 30,22 \mathrm{E} 25$.
    Key words and phrases: 2-step nilpotent Lie groups, Jacobi fields, conjugate points.

    This work was supported by 2005 Research Fund of University of Ulsan.

