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JACOBI OPERATORS IN 2-STEP NILPOTENT
LIE GROUP WITH 1-DIMENSIONAL CENTER

KEUN PARK

1. Introduction

Let A be a 2-step nilpotent Lie algebra with an inner product {, },
and N its unique simply connected Lie group with the left invariant
metric determined by the inner product {,) on . The meaning of N
being 2-step nilpotent is [N, [M, ]| = 0. The center of A is denoted
by Z. Then, M can be expressed as the direct sum of the subspaces Z
and its orthogonal complement Z-+.

For Z in Z, a skew-symmetric linear transformation j(Z): Z+ —
Z1 is defined by j(Z2)X = (adX)*Z for X € Z+, or equivalently

HZ)X, Y} =(X,Y],Z) for X,Y ezt

This transformation was defined by A. Kaplan(4,5] to study the ge-
ometry of groups of Heisenberg type, those groups for which j(Z)? =
—|Z|*:d for each Z € Z.

The Jacobi operator plays a fundamental role in Riemannian ge-
ometry. In [1], it was showed that the Jacobi operator along each
geodesic of groups of Heisenberg type has constant eigenvalues. The
main purpose of this paper is to show that the Jacobi operator along
each geodesic of a 2-step nilpotent Lie group with 1-dimensional center
has constant eigenvalues.
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2. Preliminaries

In this section, we will give some known results about 2-step milpo-
tent Lie groups with a left invariant metric. Throughout this section,
we denote A be a 2-step nilpotent Lie algebra with an inner product
{,), and N its unique simply connected Lie group with the left invariant
metric induced by the inner product {,} on N.

Recall that for Zy € Z, a skew-symmetric linear transformation
H(Zs) : 21+ — Z1 is defined by (j(Z4)X,Y) = {[X,Y], Z,) for X,Y €
ZL. Let {+6,i,%805i,--- ,46,:} be'the distinct eigenvalues of j(Z,)
with each 6 > 0, and let {W;, W3, -+ , W, } be the invariant subspaces
of j(Zo) such that j(Z;)? = —8%d on Wi for each k¥ = 1,2,.-- ,n.
Then, Z1 can be expressed as a direct sum of W's, that is Z1 =
Kerj(Zy) ® ®p.. Wi and j(Z)? = —82id on each Wy leads

(2.1) e?%) = cos(t6;)id + ﬂét-ﬁ-ﬂ.‘f(zo)
k

on W; for each k.

Let 4(t) be a curve in N such that ¥(0) = e(identity element of N)
and v'(0} = Xo + Zo where Xy € Z+ and Z; € Z. Since exp: N —
N is a diffeomorphism, the curve 4(¢) can be expressed uniquely by
¥(t) = exp(X (1) + Z(t)) with

X(t)ezt, X'0)=X,, X(0)=0
Z)eN, Z'(0)=2,, Z(0)=0.
A.Kaplan(4,5] showed that the curve v(t) is a geodesic in N .if and only
if
(2.2) X"(t) = j(20)X'(t),
1
Z'(t) + §[X'(t),X(xe)] = Zp.

The solution to this equation was obtained by P. Eberlein(See {2]), and
he obtained the following(See Propositin 3.2 [2]).

(2.3) ":('(t) ] di.,(t)(X!(t) + Zo)
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where [y is the left translation by ¥(#), and it is trivial that
(2.4) X'(t) = etl20) X,
from Kaplan’s equations (2.2).

Regarding elemets of A as left invariant vector fields on N, it is
routine to show that

(2.5)
1
VxY =3IX,Y] for X,Ye 24

VXZ:-VZX:—%J’(Z)X for Xecz2+,ZeZ,
VzZ*"=0 for Z,Z2%c Z.

And also, from (2.5), the formulas for the curvature tensor given by

R(&,, 52)63 = _V[€1,£2]§3 + vﬁl(vh&i) - sz (V€1£3)

are obtained as follows{See {2]).

(26)

ROGY)X" = 235(0, YIX* ~ 2(V, X)X + 23(1X, X*)Y
for X,Y,X* ¢z,

R(X,Y)Z = ~31X,5(2)Y] + 7V, i(2)X]
R(X,2)Y = —41[X, HZ)Y] for X, Ye€Ztand Ze€2Z,
R(Z,Z°)X = ~7i(Z")(2)X + 11(2)i(2")X
R(X,2)Z* = —ij(Z)j(Z*)X for X€Z* and 2,2°cZ
R(21,25)Z3 =0 for Zy,2,25 € Z.
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3. Main Results

Throughout this section, all matrices concerned are over the real
numbers field R. For a square matrix A, we denote |A| the determi-
nant of A, A(c1){(A(a7)) the matrix obtained by multiplying a to i-th
row(column) in A, A(i+ aj)(A(i+aj)) the matrix obtained by adding
the o times of j-th row (column) to the i-th row(column) in 4 and
A(1, ), A(7) in brief for 1 = j, the submatrix of A obtained by deleting
the i-th row and j-th column in A. And also, we denote I the identity
matrix.

NOTATIONS 3.1. Let

X= (pla —01,P2,—q2,° " yPn, _QR) € R2n,

Y= (OIQI ,01P1,0292,63p2, -+ ,6ngn, Onpn) € R*™  and

Agp = =3 Tx x + diag(6%,62,02,02,- .- ,82,682) be 2n x 2n matrix
where T is the transpose and diag{)\1, A2,* - , A ) is a diagonal matrix
of order m with the diagonals Ay, Ae, -+, Ap. And let

« Y

n
Boni1 = where @ = Y (pZ +4q%) .
n —Ty A, ’ ; k k

LEMMA 3.2. Let each 8, be a fixed real number in Notation 3.1.
Then, '
(1) all coefficients of polynomials |Az, — zI| and |A3n(2n — 1) —
zI| + |A2a(2n) — 21| depend only on {p} +¢f,--- ,p% + 42},
and
(2) all coefficients of the polynomial |Ban41 — 21| depend only on
{p% + qg) T ,Pﬁ + Q?z}

We will give the proof of Lemma 3.2 after Theorem 3.3.

THEOREM 3.3. Let N be a simply connected 2-step nilpotent Lie
group with a left-invariant metric. If N has 1-dimensional center, then
the eigenvalues of Jacobi operator along each geodesic in N are con-
stant.

proof. Since N has a left invariant metric, it is sufficient to show the
statement about geodesics y(t} with 4(0) = e where ¢ is the identity
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of N. Let y(¢) be a geodesic in N with ¥(0) = e and ¥'(¢) = X + Zg
where Xy € Z+ and Z, € Z. Then, from (2.3), we have
(3.1) Y(t) = dLo (X'(t) + Zo)
b X'(t) + Zo
where the last terms are regarded as left invariant vector fields along

Y(t)-

Recall that the Jacobi operator along (%) is

Ryw() == R, ¥ ()W (@)

From (2.6), we have the formula of Jacobi operator of 2-step nilpotent
Lie group as follows.

(3.2)
Ryw(X + 2)

=RX'(¢)+Z0(X + Z)

2 (X, X ODX@) + i (2)i(Z0)X'(1) - 3i(Z){(2)X'()

— (20X — LK Z)X (0] 4 X' (2),5(Z0)X)

+ 5 IX(0,5(2)X" (1)

for any X € 2+ and Z € Z. Since N has 1-dimensional center, (3.2)
can be reduced to

(33)  Rxun+z(X +72)
=235 X' ONXO) + S 22X - i ZeY X
+ (X1, J( D)X @] ~ X, 5(Z0) X))

forany X € Z' and Z € Z. If Zy = 0, then we see X'(t) = X from
(2.4), and so Ry (n{-) = Rx,(-) has constant eigenvalues.

Suppose that Zg # 0. We may assume that [Zo[ = 1 by rescaling
|Xo| if necessary. From (3.3), it is easy to see that Rx/(g42,(-) =0on
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Kerj(Zo) and Rxi(1)42,(-) is Kerj(Zo)-invariant. So, we may also

assume that j(Zp) is nonsingular. Let {£6;¢,46:1,--- , £6,i} be the

distinct eigenvalues of j{Z,) with each 8; > 0, and let {Wy, Wy, -+ , W, }
be the invariant subspaces of j(Z;) such that j{Z3)? = —6%id on Wy

for each k = 1,2,--- ,n. Since Z+ = @F_,W;, we can let X, =

Y t—1 Tk By for some real numbers z;’s and Ey € Wi with |Ey| = 1.

Hence, we get, from (2.1) and (2.4),

(3.4) X'(t) = %) X,

= Z xketJ(ZO)Ek
k=1

= sz{COS(tok)Ek +
k=1

= > (&Ex + niEx)
k=1

Sin(iek)
8y

3(Zo)Ex}

where £ = zi cos(t0i), me = zisin(t6) and By = 3-j(Z0)Ex for
k=1,2,--- ,n. Note that j(Z,) is skew-symmetric. For each k, since
{Ex, E} is orthonormal, it can be extended to an orthonormal basis
Be for Wy. Let 8 = {2y} UU}_, B be an orthonormal basis for N,
Then, direct calculations of Rxi(¢1z,(-) in (3.3) with (3.4) lead the
following:

ARx(1)+2,(Z0) = —Z 02(¢xEx + i Er) + Z 03 (£2 + %) Z0
k=1 k=1

n
4Rx/(1y+2,(Ex) = 30ums Y _ 0.(—mE, + &E.) + 6L Ex — 636820

=1

4Rx(1+2,(Ex) = —30lx Y 0,(—m.E, + &E) + 6 Ex — 6imiZo

=1
4RX'(!)+ZD(E) = 9§E foreach £ and E € ﬂk - {Ek,gk}.
Hence, letting pr = G and g1 = 1€k for each k and reordering 8 by

:B = {Zﬁ,ElaEla“' ’En)Eﬂ} UUE:](ﬂk - {Eks -E_k})a
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we obtain the representation matrix G of 4R X+(t)+ 2o (+) Wwith respect to
the ordered basis § as follows:

Bans1 0

o'p

where B,,,,; is in Notation 3.1 and " = diag(6%,--- ,02,6%,... 6% ...
62,-.-,82). Therefore, by Lemma 3.2(2), we see that each coeffi-
cients of the characteristic polynomial of G depend only on {p? + ¢ =
2z, p24+qi =0%z%,6%,--- ,02). This means that the eigenvalues
of the Jacobi operator along ¥(t) are constant. In fact, the eigenval-
ues depend only on {67,---,62} and {z%,-.- ,22}. This completes the
proof.

Proof of Lemma 8.2. Without loss of generality, we may assume
that each p2 + ¢Z # 0. First, we will show (1) by induction for n. For
n = 1, (1) is obvious. Suppose that {1) holds for n — 1. For each
k=1,2,---,n, let

C = (c;)
= (Azn — oI)(pi2k)(P2K)(2k + g1 2k — D(2k + g2k - 1).

Then, using expansions of {C| with respect to 2k-th row and |C(2k, 2k —
1)| with respect to (2k — 1)-th column, we have

(3.5)
P?:IA‘M —z|
= |C]
= —c(ary2r—1)|C(2k, 2k — 1) + canyar){C(2k)]
= (P + gL )(6F — o)\ A2n(2k) — 21| — g} (6% — )71 A2n(2k)(2k — 1) — 21|,

By applying the similar argument to

(Azn ~ 1) g2k — 1) a2k — 1)(2k — 1 + pp2k)(3k — 1 + pi2k)
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we obtain

(3.6) _
GElAzn — 21| =(p} + 26} — z)| Aen(2k — 1) — <]
— PR(6} — 2)"| Azn(2K)(2k — 1) — 1)

Adding (3.6) to (3.5) implies

(3.7
|Azn — 21| = (6% — 2){(|A2n(2k) — 21| + [A2n(2k - 1) — 21|
~ (6; — )| A2a(2K)(2k — 1) — 21|}
for k=1,2,--- ,n.

And also, for each k = 1,2,--. ,n — 1, by applying the similar argu-
ments to

(Azn(2n)—zI}a2n — 1)(a2n — 1)(2n — 14+pa2k — D)(Zn — 14+pu2k — 1)

and

(A2a(2n 1) — 2D)(a2n — 1)(a2n — 1)(2n — 1 + ¢.2k)(2n =1 + ¢.2k)
with a € {px, qr}, we obtain
(3.8)
PilAzn(2n) — 21| ={p{(6; - 2) + PA(0} — 2)}Azn—s — 21|
~ Pul6% — 2)*|A2n-2(2k — 1) - 21,

(3.9)
PilA2n(2n = 1) — 21| ={p}(62 — ) + ¢2(8% — 2)}|A2n—s — ]|
— 4o (6% — 2)°|Azn—2(2k — 1) — 21,

(3.10)
0lAz2a(2n) — 2I) ={q}(6% ~ ) + pE (6} — 2)}| Azn—2 — 2|
— Pa(8; — 2)*|Azn-a(2k) — 21|,
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3.11)
( gkl A2n(2n — 1) — 21| ={q}(67 — 2) + ¢2(6% — 2)}Azn—2 — 21|
— ¢a (0% — )| Azn—2(2k) - 21|.

Adding (3.9),(3.10) and (3.11) to (3.8) implies
(3.12)

(Pk + ¢i)(A2n(2n) — 21| + |A2n(2n — 1) — =1}

=2{(pk + Gk 0% — =) + (0}, + ¢2)(6} — )} Azn—s — 2]

— (P% + 42 )6k — 2)*(|A2n—2(2k) — 21| + |A2n-2(2k — 1) — 21]).
From (3.7) for k = n and {3.12) for k = n — 1, we get that (1) holds
for n. This completes the proof of (1).

Next, we will prove (2). Letting D = (d,,) = Byns1 — 21, we have
that

(3.13)
'Bgn_l - a:I|
2n+41

=Y (~-1)"*d,,|D(1, 5)]
=1

={Z(Pf +q)) — z}|Agn — 2If - Zok(}?kw(l»zk + 1)| — ] D(1,2k)]).

=1 k=1

Expanding {D(1,2k + 1)}{ps2k){2k + gx2k — 1)| with respect to 2k-th
row, we obtain that

(3.14)
px|D(1,2k + 1)]

=1D(1,2k + 1)(pi2k)(2k + @12k — 1)

=0x(pk + ¢i)| A2n(2k) — 21| + qr(6} — 2)| D(L, 2k + 1)(2k, 2k)|.
Similarly, expanding {D(1,2k)(qi2k — 1)(2k — 1 + pi2k)| with respect
to (2k — 1)-th row, we obtain that
(3.15)

| D(1, 2k)|

=|D(1,2k){qr2k — 1)(2k ~ 1 + p2k)|
= — 645} + ) Asa(2k —1) — 21| — pa(6 — 2)[D(1, 2)(2k — 1, 28)|.
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And also, expanding
|D(1,2k+1)(2k,2k)(qx2k —1)| and |D(1,2k)(2k —1,2k)(px2k — 1)]
with respect to (2k — 1)-th row, we have that

(3.16)
x| D(1, 2k + 1)(2k, 2k)| + pel D(1, 2k)(2k — 1,2K)]

=|D(1, 2k + 1)(2k, 2k)(qr2k — 1)| + |D(1, 2k)}(2k — 1,2k){(pr2k — 1)
= — x(PE + ¢ A2a(2k)(2k — 1) — 21|.

Hence, from (3.14), (3.15) and (3.16), we see that

(3.17)

pe|D(1,2k + 1) — | D(1, 2k)]
=0k (Pt + 4i)(| A2n(2k) — 21} + | A2 (2k — 1) — 21|)
— (8% — )| Aan(2K)(2k — 1) — 21|
Substituding (3.17) to (3.13) and using (3.7), we have that

Bansr ~ 2l = —z{1+ ) (p} + ai )6} — =) HAgn — 211,

k=1
which implies that [By, 41 — 21| depends only on {p? +4¢2,--- , p2 +4¢2}
by (1).
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