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A STUDY ON NILPOTENT LIE GROUPS
JEONG-K0OO NAM

ABSTRACT. We briefly discuss the Lie groups, it’s nilpotency and
representations of a nilpotent Lie groups. Dixmier and Kirillov
proved that simply connected nilpotent Lie groups over R are mono-
mial. We reformulate the above result at the Lie algebra level.

1. Introduction

Standard references are in Helgason [He|, Varadarajan [V] and Serre
[Se].

An analytic group G is a topological group with the structure of a
connected smooth manifold such that its multiplication from G x G to
G given by (z,y) — xy and the inverse map of G to G given by z + 271
(x € G) are both smooth mappings. Such a group is locally compact; it
is generated by any compact neighborhood of the identity element e. It
also has a countable base. A Lie group is a locally compact topological
group with a countable base such that the identity component is an
analytic group.

Now we let GG be an analytic group and let L, : G — G be the left
translation by x € G given by

L.(y) =xy, ye€QG.

A vector field X on G is left invariant if it commutes with left trans-
lations as an operator on functions, i.e., if

dL.(y)(X(y)) = X(zy) forall z € G,
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where dL,(y) denotes the differential of L, at y € G. We recall
that if dimG = n and (U,¢) is a chart at ¢ € G with ¢(g) =
(x1(g), -+ ,zn(g)) for some choice of coordinates x1,- -+ ,x, in R, we
can write a vector field X as

X@=Z&@WWQ%)gea

J=1

Then X acts on C°(G), the space of smooth functions on G, via

(L) xf0) =3 X022 o ),

where f € C°(G) and g € G. Using the equation (1.1), we can define
the product of two vector fields X and Y through their composition
action on C*°(G) :

XY (f)(g) = XY (f)g), [feCFG) geC.

The bracket [X,Y] := XY — Y X of two vector fields X and Y on G
is also a vector field on G. It is easy to show that for any vector fields
X,Y, Z on G, the following properties
(1.2)

(i) the bracket operation is bilinear,

(i) [X, X] =0« [X,Y] = —[Y, X], ie., [,] is skew-symmetric,

(i) [X, Y], Z] + (Y, Z], X] + [[Z,X],Y] =0

hold. The last identity (iii) is known as the Jacobi identity. A vector
space over any field F' with a bracket operation [-,-] satisfying the
conditions (i), (ii), (iii) in (1.2) is called a Lie algebra over F. In this
section, F' = R or C. The vector space X(G) of all vector fields on G

forms a Lie algebra over R with the bracket operation [-,-]. It is easy
to check that the set g of all left-invariant vector fields on G is a Lie
algebra over R with the bracket operation [-,-] and dimg g = n.

DEFINITION 1.1. Let g be a Lie algebra over R with the bracket
operation [-,-]. A subspace I of g is called an ideal of g if [, g] C I.
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A Lie algebra is said to be simple if it has no nontrivial ideals. A Lie
algebra is said to be semisimple if it can be written as a direct sum of
simple Lie algebras.

One can associate the Lie algebra g of all left-invariant vector fields
on G with the tangent space T.(G) of G at e via

(1.3) X X(e), Xeaq

It is easy to see that the mapping (1.3) is an isomorphism of vector
spaces. The Lie algebra structure of g carries over T, (G) via the map-
ping (1.3) and so we identify g with T.(G) as Lie algebras. We will
say that G is semisimple if its Lie algebra g is semisimple and G has a
finite center.

An important link between a Lie group and its Lie algebra is the
existence of the exponential map. Let G be a Lie group with its Lie
algebra g. For each X € g, we let X be the corresponding left-invariant
vector field on G. Then there exists a unique map, called the exponen-
tial map

(1.4) exp:g— G

such that for each X € g, t — exptX (¢t € R) is a one-parameter
subgroup of G and conversely every one-parameter subgroup has this
form. We will say that ¢ — exptX is the one-parameter subgroup of
G generated by X in g. Also we may refer to X as the infinitesimal
generator of exptX.

A fundamental fact is that the exponential map exp : g — G is
a local diffeomorphism. It is well known that for any analytic group
homomorphism ¢ of a Lie group G to another Lie group G’ with Lie
algebra g¢’, the following diagram is commutative :

d¢

g — ¢

expl J{exp

GLG’

diagram 1-1.
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For each x € GG, we denote by
(1.5) Ad(z):g— g

the automorphism of g which is the differential of the inner automor-
phism I, of G. The action of G on g given by Ad : G — GL(g) is
called the adjoint action of G or the adjoint representation of G on g.
It is obvious that the following diagrams are commutative :

Ad(z)
g — 9

e
G ¢

diagram 1-2.

g —% End(g)

expl lexp

¢ 24, GL(g)

diagram 1-3.

Here ad denotes the differential of Ad.

For a later use, we introduce the coadjoint action of G. Let g* be
the real vector space of all R-linear forms on g. For each z € G, we
denote by

(1.6) Ad*(z) : g* — g”

the contragredient of the adjoint mapping Ad(x) : g — g, i.e., the
transpose of the R-linear mapping Ad(z~!) : g — g. These mappings
Ad*(z) (x € G) give rise to a linear representation of G in g, which is
called the coadjoint representation of G in g. Obviously the following
diagram is commutative :

g* —Y End(g*)

expl lexp

G 2, GL(g)



A study on nilpotent Lie groups 141

diagram 1-4.

Here ad”™ denotes the differential of the map Ad”.

A Lie group that can be realized as a closed subgroup of GL(n,R)
for some n will be called a linear Lie group. If G is a linear Lie group,
then the Lie algebra of G can be thought of as a Lie algebra of matrices,
and the exponential mapping is given by the exponential mapping for
matrices :

2 X3

(1.7) epr::ZﬁX:[+X+T+?+..._
=0

LEMMA 1.2. Let G be a Lie group with Lie algebra g and let exp :
g — G be the exponential mapping of g into GG. Then, if X,Y € g,
42
(a) exptX -exptY = exp {t(X +Y)+ 5[X’ Y]+ O(t3)} ,
(b)  exp(—tX) - exp(—tY) - exptX - exptY = exp{t’[X,Y] +
o)},
(c) exptX -exptY - exp(—tX) = exp{tY + *[X, Y] + O(t3)}.

In each case O(#3) denotes a vector in g with the property : there
O(t?)
3
For the proof we refer to Helgason [He], pp. 96-97.

exists an € > 0 such that is bounded and analytic for |t| < e.

THEOREM 1.3. Let G be a Lie group with Lie algebra g. The
exponential mapping exp : ¢ — G has the differential

1_e—adX

(1.8) dexp X = d(Lexp x)e © —d

(X €g).

As usual, g is here identified with the tangent space gx .
The proof of Theorem 1.3 can be found in Helgason [He], pp. 95-96.

DEFINITION 1.4. Let g be a Lie algebra over a field F', where F' = R
or C with the Lie bracket [, |. The bilinear form By : g xg — F defined
by

(1.9) By(X,Y):=Tr(adXoadY), X,Yeg
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is called the Killing form of g. Here ad X : g — g is the linear mapping
of g into g defined by

(1.10) ad X(Y):=[X,Y], Y eaq.

If o is an automorphism of g, then ad(cX) = coad X oo~ 1. Thus we
have

(1.11) By(oX,0Y) =B4(X,Y), oe€Aut(g), X,Y eg,
(1.12) By(X,[Y,Z]) = B4(Y,[Z,X]) = B4(Z,[X,Y]), X,Y,Z¢€g.

ExampLE 1.5. G = GL(n,R); the general linear group over R.
R(™™) is regarded as the Lie algebra of the Lie group GL(n,R) with
the bracket operation

(X, Y]=XY -YX, X,YeRM™.

ExXAMPLE 1.6. Orthogonal Groups;
Let p,q € ZT withp > ¢ > 0 and p+ ¢ =n > 0. Let I, , be the
quadratic form on R™ given by

P n
(1.13) Ipg(x1, - ) :Zac?— Z ac?
i=1 Jj=p+1
The corresponding bilinear form B, , is given by
P n
(1.14) Bpg((xi), () = > wiyi — Y 515,
i=1 j=p+1

where © = (z;),y = (y;) € R™. This form is definite if ¢ = 0 and
indefinite if ¢ > 0. The general linear group GL(n,R) acts on R"
in the usual way by matrix multiplication. We define the orthogonal
group O(p, q) by
(1.15)

O(p,q) :={9 € GL(n,R) | I 4(9 - z) = I, 4(z) for all z € R"}.
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If ¢ = 0, we write O(p) instead of O(p,0). It is easy to see that O(p) is
compact. But if ¢ > 0, O(p, ¢q) is not compact and it has four connected
components. We denote by o(p, ¢) the Lie algebra of O(p, q). Then

o(p,q) = {A € R™™ | B, ,(Au,v)+B, 4(u, Av) =0 for all u,v € R"}.

A simple computation shows that each element of o(p,q) may be put

in the form
—-A B
C D\’

where A = —tA € R®P), D = —'D € R(@9 and B ='C is a p x ¢
matrix.

2. Nilpotent groups

Let G be a group with the identity element e. For two subsets A, B
of G, we denote by [A, B] the subgroup of G generated by the set of
commutators

{ [z,y] = (zy)(yz) " =ayz~ 'y |2,y G }.

We observe that if A and B are normal subgroups of G, then [A, B] is a
normal subgroup of G. In particular, the derived group D'G =[G, G]
of GG is a normal subgroup of G.

Let | € ZT be a positive integer. We define the descending central
series (C'G)>0 of G recursively via

(2.1) C°G:=G, =[G, caql, 1=0,1,2,---.

Then we get the following descending filtration of normal subgroup of

G :
(2.2) G—C'GD>C*G>--->CG> - >{eh

The group G is said to be nilpotent if there exists a positive integer
m € Z* such that C"G = {e}. If C" G # {e} and C™G = {e} for
m 2 1, then the number m is called the length of the nilpotent group
G and G is called a m-step nilpotent group.
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The ascending central series (C;G);>0 of the group G is defined re-
cursively according to the rules

CoG = {e},
Ci+1G := the preimage of the center of G/C;G

under the canonical epimorphism G — G/C,G.

Obviously C1G is the center Z of G and we have
(2.3) Cit1G ={x € G| [z,y] € C(G) forall y € G}.
We have the following ascending filtration of normal subgroups of G :
(2.4) {e}cCiGcCcCGC---CcCGGC---CQG.

Let G be a group with the identity element e and let m = 1 be a
sufficiently large positive integer. Then it is easy to show that the
following conditions are mutually pairwise equivalent :

(a) C"G = {e};
(b) There exists a sequence (G})o<i<m of subgroups of G such that
Go =G, Gy, = {e},

G=GyDG1DGD---DG DD Gy ={e}
and
[G,G]) CGpy1 foralll with0<I<m—1;

(c) CnG =G.
Therefore G is a nilpotent group if it satisfies one of the above three

conditions. If G is a nilpotent Lie group, then it is easy to see that

(i) each subgroup H of G is nilpotent ;
(ii) for each normal subgroup H of G, the quotient group G/H is
nilpotent.

Let G # {e} be a nilpotent group. Then the center Z of G is nontrivial.
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DEFINITION 2.1. The derived series (D'G);>q of the group G is
defined recursively via the prescriptions.

(2.5) D°G =@, DG = [D'G,D'G], 1=0,1,2,---.

The derived series yields the descending filtration of normal subgroups

of G :
(2.6) GO D'Go>D*G>--->D'G>---D{e}.

We observe that DG = C!G = [G, G] is the derived group of G. The
group G is said to be solvable if there exists a sufficiently large positive

integer m > 0 such that
DG = {e}

holds. If D™~ 1G # {e} and D™G = {e} for m > 1, then the number
m is called the length of the solvable group G. Obviously we have
C!G O D'G for all | € Z*. Thus every nilpotent group is solvable, but
the converse is false.

The following remarkable fact concerning finite dimensional repre-
sentations of solvable groups can be easily established (c.f. [K2]).

THEOREM 2.2. Let G be a connected solvable locally compact topo-
logical group. Suppose (7, H) is a finite dimensional irreducible unitary
representation of G. Then dim¢ H = 1.

COROLLARY 2.3. A compact connected solvable topological group
G is abelian.

Proof. 1t is well known that every irreducible unitary representation
of a compact connected topological group is finite dimensional. There-
fore any topologically irreducible unitary representation of G is finite
dimensional. According to Theorem 2.2, it is one-dimensional. Hence
G is abelian. O

REMARK 2.4. In view of Theorem 2.2, the unitary dual G of a
connected solvable locally compact topological group G consists of two
types of equivalence classes of

(I) continuous unitary characters of G;
II) equivalence classes of infinite dimensional, topological irreducible
g
unitary representations of G.
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It is well known that the identity component Gg of GG is a nilpotent
Lie group if and only if the Lie algebra g of GG is a nilpotent Lie algebra
over R. We recall the notion of the nilpotency of a Lie algebra g. We
define the descending central series (C'g);>o of g recursively via the
prescriptions

(2.7) C’g=g, Cl'flg=1gClg, 1=0,1,2,---.

A Lie algebra g is said to be nilpotent if there exists a positive integer
m € ZT such that C"™g = {0}. It is well known that if G is a nilpotent
Lie group over R, then the exponential mapping exp : g — G is
a diffeomorphism of g onto GG, where g denotes the Lie algebra of GG
(cf.[He]).

3. Representations of a nilpotent Lie group

First we recall that a real Lie group is said to be monomial if each
topologically irreducible unitary representation of G can be unitarily
induced by a unitary character of some closed subgroup H of G.

Using the Mackey machinery, Dixmier and Kirillov proved the fol-
lowing important result :

THEOREM 3.1. (Dixmier-Kirillov) The simply connected nilpotent
Lie groups over R are monomial.

REMARK 3.2. More generally, it can be proved that a simply con-
nected real Lie group whose exponential mapping exp : g = Lie(G) —
G is a global diffeomorphism is monomial.

Now we reformulate Theorem 3.1 at the Lie algebra level. Let (7, H)
be a topologically irreducible, unitary representation of the simply con-
nected, nilpotent real Lie group G in the complex Hilbert space H. Let
H be a connected closed subgroup of G with a unitary character y such
that

(m,H) = Ind% (x, C).

Let g be the Lie algebra of G and let h the Lie subalgebra of g corre-
sponding to the Lie subgroup H of G. Let [y be the differential of x.
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Then we have the following commutative diagram :

h —°— R

epol le2m'

H —X— Cf
diagram 3-1.

Here expy; : h — H denotes the exponential mapping of f to H. Thus
we have

(3.1) x(expy X) = 62m<X’l0>, Xeh
and
(3.2) < [X,Y],lp >=0 forall X,Y €b.

The relation (3.2) follows from the fact that expy[X,Y] € [H, H]
and x(g) =1 for all g € [H, H|. Indeed, according to (3.1), we have

1= x(expy[X,Y]) = T <XVo> Xy ey,
Therefore < [X,Y],lp > is an integer. We have < [X,Y],lp >= 0.

Otherwise, < [X,Y],lp >= n € Z with n # 0. Then for sufficiently
small positive real numbers ¢, we have

1= x(expy[tX,Y]) = 2™ £ 1

because tn & Z. This leads to the contradiction.

Now we let | € g* be any R-linear form which extends [y to the
whole Lie algebra g. Then b forms a totally isotropic vector subspace
of g relative to the skew-symmetric R-bilinear form B; : g x g — R
given by
(3.3) B(X,)Y)=<[X,Y],l>, X Ye€eg

associated with [ on g. More precisely, Bi|gxg = 0. In this case we say
that the Lie subalgebra b of g is subordinate to . We introduce the
notation

(3.4) Xi,h =X
and the monomial representation of G
(3.5) (T, H) == Ind% (x1.5, C).

Then we obtain the following theorem 3.3 which can be considered
as an another version of theorem 7.2 a in [K4]
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THEOREM 3.3. Let G be a simply connected nilpotent real Lie
group with Lie algebra g. Assume that there is given a topologically
irreducible unitary representation (w,H) of G. Then there exists a
linear form | € g* and a Lie subalgebra ) of g subordinate to | such
that

(7, H) = (w19, H) == Ind§ (x1,0. C).

We note that x;y is a unitary character of H such that
(3.6) Xi,p(expy X) = e2mISXI> X e,

where H is the simply connected closed subgroup of G corresponding
to a Lie subalgebra b of g.
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