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A STUDY ON NILPOTENT LIE GROUPS

Jeong-Koo Nam

Abstract. We briefly discuss the Lie groups, it’s nilpotency and

representations of a nilpotent Lie groups. Dixmier and Kirillov
proved that simply connected nilpotent Lie groups over R are mono-

mial. We reformulate the above result at the Lie algebra level.

1. Introduction

Standard references are in Helgason [He], Varadarajan [V] and Serre
[Se].

An analytic group G is a topological group with the structure of a
connected smooth manifold such that its multiplication from G×G to
G given by (x, y) 7→ xy and the inverse map of G to G given by x 7→ x−1

(x ∈ G) are both smooth mappings. Such a group is locally compact; it
is generated by any compact neighborhood of the identity element e. It
also has a countable base. A Lie group is a locally compact topological
group with a countable base such that the identity component is an
analytic group.

Now we let G be an analytic group and let Lx : G → G be the left
translation by x ∈ G given by

Lx(y) := xy, y ∈ G.

A vector field X on G is left invariant if it commutes with left trans-
lations as an operator on functions, i.e., if

dLx(y)(X(y)) = X(xy) for all x ∈ G,
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where dLx(y) denotes the differential of Lx at y ∈ G. We recall
that if dim G = n and (U,ϕ) is a chart at g ∈ G with ϕ(g) =
(x1(g), · · · , xn(g)) for some choice of coordinates x1, · · · , xn in Rn, we
can write a vector field X as

X(g) =
n∑

j=1

Xj(g)(dϕ)−1

(
∂

∂xj

)
, g ∈ G.

Then X acts on C∞(G), the space of smooth functions on G, via

(1.1) Xf(g) =
n∑

j=1

Xj(g)
∂(f ◦ ϕ−1)

∂xj
◦ ϕ(g),

where f ∈ C∞(G) and g ∈ G. Using the equation (1.1), we can define
the product of two vector fields X and Y through their composition
action on C∞(G) :

XY (f)(g) := X(Y (f))(g), f ∈ C∞(G), g ∈ G.

The bracket [X, Y ] := XY − Y X of two vector fields X and Y on G
is also a vector field on G. It is easy to show that for any vector fields
X, Y, Z on G, the following properties
(1.2)

(i) the bracket operation is bilinear,

(ii) [X, X] = 0⇔ [X, Y ] = −[Y, X], i.e., [·, ·] is skew-symmetric,

(iii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

hold. The last identity (iii) is known as the Jacobi identity. A vector
space over any field F with a bracket operation [·, ·] satisfying the
conditions (i), (ii), (iii) in (1.2) is called a Lie algebra over F . In this
section, F = R or C. The vector space X(G) of all vector fields on G
forms a Lie algebra over R with the bracket operation [·, ·]. It is easy
to check that the set g of all left-invariant vector fields on G is a Lie
algebra over R with the bracket operation [·, ·] and dimR g = n.

Definition 1.1. Let g be a Lie algebra over R with the bracket
operation [·, ·]. A subspace I of g is called an ideal of g if [I, g] ⊆ I.
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A Lie algebra is said to be simple if it has no nontrivial ideals. A Lie
algebra is said to be semisimple if it can be written as a direct sum of
simple Lie algebras.

One can associate the Lie algebra g of all left-invariant vector fields
on G with the tangent space Te(G) of G at e via

(1.3) X 7→ X(e), X ∈ g.

It is easy to see that the mapping (1.3) is an isomorphism of vector
spaces. The Lie algebra structure of g carries over Te(G) via the map-
ping (1.3) and so we identify g with Te(G) as Lie algebras. We will
say that G is semisimple if its Lie algebra g is semisimple and G has a
finite center.

An important link between a Lie group and its Lie algebra is the
existence of the exponential map. Let G be a Lie group with its Lie
algebra g. For each X ∈ g, we let X̃ be the corresponding left-invariant
vector field on G. Then there exists a unique map, called the exponen-
tial map

(1.4) exp : g→ G

such that for each X ∈ g, t 7→ exp tX (t ∈ R) is a one-parameter
subgroup of G and conversely every one-parameter subgroup has this
form. We will say that t 7→ exp tX is the one-parameter subgroup of
G generated by X in g. Also we may refer to X as the infinitesimal
generator of exp tX.

A fundamental fact is that the exponential map exp : g → G is
a local diffeomorphism. It is well known that for any analytic group
homomorphism φ of a Lie group G to another Lie group G′ with Lie
algebra g′, the following diagram is commutative :

g
dφ−−−−→ g′

exp

y yexp

G
φ−−−−→ G′

diagram 1-1.
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For each x ∈ G, we denote by

(1.5) Ad(x) : g→ g

the automorphism of g which is the differential of the inner automor-
phism Ix of G. The action of G on g given by Ad : G → GL(g) is
called the adjoint action of G or the adjoint representation of G on g.
It is obvious that the following diagrams are commutative :

g
Ad(x)−−−−→ g

exp

y yexp

G
Ix−−−−→ G

diagram 1-2.

g
ad−−−−→ End(g)

exp

y yexp

G
Ad−−−−→ GL(g)

diagram 1-3.

Here ad denotes the differential of Ad.
For a later use, we introduce the coadjoint action of G. Let g∗ be

the real vector space of all R-linear forms on g. For each x ∈ G, we
denote by

(1.6) Ad∗(x) : g∗ → g∗

the contragredient of the adjoint mapping Ad(x) : g → g, i.e., the
transpose of the R-linear mapping Ad(x−1) : g → g. These mappings
Ad∗(x) (x ∈ G) give rise to a linear representation of G in g, which is
called the coadjoint representation of G in g. Obviously the following
diagram is commutative :

g∗
ad∗−−−−→ End(g∗)

exp

y yexp

G
Ad∗−−−−→ GL(g∗)
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diagram 1-4.

Here ad∗ denotes the differential of the map Ad∗.
A Lie group that can be realized as a closed subgroup of GL(n, R)

for some n will be called a linear Lie group. If G is a linear Lie group,
then the Lie algebra of G can be thought of as a Lie algebra of matrices,
and the exponential mapping is given by the exponential mapping for
matrices :

(1.7) expX :=
∞∑

l=0

1
l!

X l = I + X +
X2

2!
+

X3

3!
+ · · · .

Lemma 1.2. Let G be a Lie group with Lie algebra g and let exp :
g→ G be the exponential mapping of g into G. Then, if X, Y ∈ g,

(a) exp tX · exp tY = exp
{

t(X + Y ) +
t2

2
[X, Y ] + O(t3)

}
,

(b) exp(−tX) · exp(−tY ) · exp tX · exp tY = exp{t2[X, Y ] +
O(t3)},

(c) exp tX · exp tY · exp(−tX) = exp{tY + t2[X, Y ] + O(t3)}.

In each case O(t3) denotes a vector in g with the property : there

exists an ε > 0 such that
O(t3)

t3
is bounded and analytic for |t| < ε.

For the proof we refer to Helgason [He], pp. 96–97.

Theorem 1.3. Let G be a Lie group with Lie algebra g. The
exponential mapping exp : g→ G has the differential

(1.8) d expX = d(Lexp X)e ◦
1− e− ad X

ad X
(X ∈ g).

As usual, g is here identified with the tangent space gX .

The proof of Theorem 1.3 can be found in Helgason [He], pp. 95–96.

Definition 1.4. Let g be a Lie algebra over a field F , where F = R
or C with the Lie bracket [ , ]. The bilinear form Bg : g×g→ F defined
by

(1.9) Bg(X, Y ) := Tr(adX ◦ adY ), X, Y ∈ g
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is called the Killing form of g. Here adX : g→ g is the linear mapping
of g into g defined by

(1.10) ad X(Y ) := [X, Y ], Y ∈ g.

If σ is an automorphism of g, then ad(σX) = σ ◦ adX ◦ σ−1. Thus we
have

(1.11) Bg(σX, σY ) = Bg(X, Y ), σ ∈ Aut(g), X, Y ∈ g,

(1.12) Bg(X, [Y, Z]) = Bg(Y, [Z,X]) = Bg(Z, [X, Y ]), X, Y, Z ∈ g.

Example 1.5. G = GL(n, R); the general linear group over R.
R(n,n) is regarded as the Lie algebra of the Lie group GL(n, R) with
the bracket operation

[X, Y ] = XY − Y X, X, Y ∈ R(n,n).

Example 1.6. Orthogonal Groups;
Let p, q ∈ Z+ with p ≥ q > 0 and p + q = n > 0. Let Ip,q be the

quadratic form on Rn given by

(1.13) Ip,q(x1, · · · , xn) =
p∑

i=1

x2
i −

n∑
j=p+1

x2
j .

The corresponding bilinear form Bp,q is given by

(1.14) Bp,q((xi), (yi)) =
p∑

i=1

xiyi −
n∑

j=p+1

xjyj ,

where x = (xi), y = (yi) ∈ Rn. This form is definite if q = 0 and
indefinite if q > 0. The general linear group GL(n, R) acts on Rn

in the usual way by matrix multiplication. We define the orthogonal
group O(p, q) by
(1.15)

O(p, q) := {g ∈ GL(n, R) | Ip,q(g · x) = Ip,q(x) for all x ∈ Rn}.
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If q = 0, we write O(p) instead of O(p, 0). It is easy to see that O(p) is
compact. But if q > 0, O(p, q) is not compact and it has four connected
components. We denote by o(p, q) the Lie algebra of O(p, q). Then

o(p, q) = {A ∈ R(n,n) | Bp,q(Au, v)+Bp,q(u, Av) = 0 for all u, v ∈ Rn}.

A simple computation shows that each element of o(p, q) may be put
in the form [

−A B
C D

]
,

where A = −tA ∈ R(p,p), D = −tD ∈ R(q,q) and B = tC is a p × q
matrix.

2. Nilpotent groups

Let G be a group with the identity element e. For two subsets A,B
of G, we denote by [A,B] the subgroup of G generated by the set of
commutators

{ [x, y] := (xy)(yx)−1 = xyx−1y−1 | x, y ∈ G }.

We observe that if A and B are normal subgroups of G, then [A,B] is a
normal subgroup of G. In particular, the derived group D1G := [G, G]
of G is a normal subgroup of G.

Let l ∈ Z+ be a positive integer. We define the descending central
series (ClG)l≥0 of G recursively via

(2.1) CoG := G, Cl+1 := [G, ClG], l = 0, 1, 2, · · · .

Then we get the following descending filtration of normal subgroup of
G :

(2.2) G←↩ C1G ⊃ C2G ⊃ · · · ⊃ ClG ⊃ · · · ⊃ {e}.

The group G is said to be nilpotent if there exists a positive integer
m ∈ Z+ such that CmG = {e}. If Cm−1G 6= {e} and CmG = {e} for
m = 1, then the number m is called the length of the nilpotent group
G and G is called a m-step nilpotent group.
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The ascending central series (ClG)l≥0 of the group G is defined re-
cursively according to the rules

C0G := {e},
Cl+1G := the preimage of the center of G/ClG

under the canonical epimorphism G→ G/ClG.

Obviously C1G is the center Z of G and we have

(2.3) Cl+1G = {x ∈ G | [x, y] ∈ Cl(G) for all y ∈ G}.

We have the following ascending filtration of normal subgroups of G :

(2.4) {e} ⊂ C1G ⊂ C2G ⊂ · · · ⊂ ClG ⊂ · · · ⊂ G.

Let G be a group with the identity element e and let m = 1 be a
sufficiently large positive integer. Then it is easy to show that the
following conditions are mutually pairwise equivalent :

(a) CmG = {e};
(b) There exists a sequence (Gl)0≤l≤m of subgroups of G such that

G0 = G, Gm = {e},

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gl ⊃ · · · ⊃ Gm = {e}

and

[G, Gl] ⊆ Gl+1 for all l with 0 ≤ l ≤ m− 1;

(c) CmG = G.

Therefore G is a nilpotent group if it satisfies one of the above three
conditions. If G is a nilpotent Lie group, then it is easy to see that

(i) each subgroup H of G is nilpotent ;
(ii) for each normal subgroup H of G, the quotient group G/H is

nilpotent.

Let G 6= {e} be a nilpotent group. Then the center Z of G is nontrivial.



A study on nilpotent Lie groups 145

Definition 2.1. The derived series (DlG)l≥0 of the group G is
defined recursively via the prescriptions.

(2.5) D0G = G, Dl+1G = [DlG, DlG], l = 0, 1, 2, · · · .

The derived series yields the descending filtration of normal subgroups
of G :

(2.6) G ⊃ D1G ⊃ D2G ⊃ · · · ⊃ DlG ⊃ · · · ⊃ {e}.

We observe that D1G = C1G = [G, G] is the derived group of G. The
group G is said to be solvable if there exists a sufficiently large positive
integer m > 0 such that

DmG = {e}
holds. If Dm−1G 6= {e} and DmG = {e} for m ≥ 1 , then the number
m is called the length of the solvable group G. Obviously we have
ClG ⊇ DlG for all l ∈ Z+. Thus every nilpotent group is solvable, but
the converse is false.

The following remarkable fact concerning finite dimensional repre-
sentations of solvable groups can be easily established (c.f. [K2]).

Theorem 2.2. Let G be a connected solvable locally compact topo-
logical group. Suppose (π,H) is a finite dimensional irreducible unitary
representation of G. Then dimCH = 1.

Corollary 2.3. A compact connected solvable topological group
G is abelian.

Proof. It is well known that every irreducible unitary representation
of a compact connected topological group is finite dimensional. There-
fore any topologically irreducible unitary representation of G is finite
dimensional. According to Theorem 2.2, it is one-dimensional. Hence
G is abelian. �

Remark 2.4. In view of Theorem 2.2, the unitary dual Ĝ of a
connected solvable locally compact topological group G consists of two
types of equivalence classes of

(I) continuous unitary characters of G;
(II) equivalence classes of infinite dimensional, topological irreducible

unitary representations of G.
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It is well known that the identity component G0 of G is a nilpotent
Lie group if and only if the Lie algebra g of G is a nilpotent Lie algebra
over R. We recall the notion of the nilpotency of a Lie algebra g. We
define the descending central series (Clg)l≥0 of g recursively via the
prescriptions

(2.7) C0g = g, Cl+1g = [g, Clg], l = 0, 1, 2, · · · .

A Lie algebra g is said to be nilpotent if there exists a positive integer
m ∈ Z+ such that Cmg = {0}. It is well known that if G is a nilpotent
Lie group over R, then the exponential mapping exp : g → G is
a diffeomorphism of g onto G, where g denotes the Lie algebra of G
(cf.[He]).

3. Representations of a nilpotent Lie group

First we recall that a real Lie group is said to be monomial if each
topologically irreducible unitary representation of G can be unitarily
induced by a unitary character of some closed subgroup H of G.

Using the Mackey machinery, Dixmier and Kirillov proved the fol-
lowing important result :

Theorem 3.1. (Dixmier-Kirillov) The simply connected nilpotent
Lie groups over R are monomial.

Remark 3.2. More generally, it can be proved that a simply con-
nected real Lie group whose exponential mapping exp : g = Lie(G)→
G is a global diffeomorphism is monomial.

Now we reformulate Theorem 3.1 at the Lie algebra level. Let (π,H)
be a topologically irreducible, unitary representation of the simply con-
nected, nilpotent real Lie group G in the complex Hilbert space H. Let
H be a connected closed subgroup of G with a unitary character χ such
that

(π,H) = IndG
H(χ, C).

Let g be the Lie algebra of G and let h the Lie subalgebra of g corre-
sponding to the Lie subgroup H of G. Let l0 be the differential of χ.
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Then we have the following commutative diagram :

h
l0−−−−→ R

expH

y ye2πi

H
χ−−−−→ C×1

diagram 3-1.

Here expH : h→ H denotes the exponential mapping of h to H. Thus
we have

(3.1) χ(expH X) = e2πi<X,l0>, X ∈ h

and

(3.2) < [X, Y ], l0 >= 0 for all X, Y ∈ h.

The relation (3.2) follows from the fact that expH [X, Y ] ∈ [H,H]
and χ(g) = 1 for all g ∈ [H,H]. Indeed, according to (3.1), we have

1 = χ(expH [X, Y ]) = e2πi<[X,Y ],l0>, X, Y ∈ h.

Therefore < [X, Y ], l0 > is an integer. We have < [X, Y ], l0 >= 0.
Otherwise, < [X, Y ], l0 >= n ∈ Z with n 6= 0. Then for sufficiently
small positive real numbers t, we have

1 = χ(expH [tX, Y ]) = e2πitn 6= 1

because tn 6∈ Z. This leads to the contradiction.
Now we let l ∈ g∗ be any R-linear form which extends l0 to the

whole Lie algebra g. Then h forms a totally isotropic vector subspace
of g relative to the skew-symmetric R-bilinear form Bl : g × g → R
given by

(3.3) Bl(X, Y ) := < [X, Y ], l >, X, Y ∈ g

associated with l on g. More precisely, Bl|g×g = 0. In this case we say
that the Lie subalgebra h of g is subordinate to l. We introduce the
notation

(3.4) χl,h := χ

and the monomial representation of G

(3.5) (πl,h,H) := IndG
H(χl,h, C).

Then we obtain the following theorem 3.3 which can be considered
as an another version of theorem 7.2 a in [K4]
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Theorem 3.3. Let G be a simply connected nilpotent real Lie
group with Lie algebra g. Assume that there is given a topologically
irreducible unitary representation (π,H) of G. Then there exists a
linear form l ∈ g∗ and a Lie subalgebra h of g subordinate to l such
that

(π,H) = (πl,h,H) := IndG
H(χl,h, C).

We note that χl,h is a unitary character of H such that

(3.6) χl,h(expH X) = e2πi<X,l>, X ∈ h,

where H is the simply connected closed subgroup of G corresponding
to a Lie subalgebra h of g.
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