
J. Korean Math. Soc. 45 (2008), No. 6, pp. 1705–1723

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS
SATISFYING J2

z = ⟨Sz, z⟩A

Changrim Jang†, Taehoon Lee, and Keun Park

Abstract. Let n be a 2-step nilpotent Lie algebra which has an inner
product ⟨ , ⟩ and has an orthogonal decomposition n = z⊕v for its center
z and the orthogonal complement v of z. Then Each element z of z defines

a skew symmetric linear map Jz : v −→ v given by ⟨Jzx, y⟩ = ⟨z, [x, y]⟩
for all x, y ∈ v. In this paper we characterize Jacobi fields and calculate
all conjugate points of a simply connected 2-step nilpotent Lie group N

with its Lie algebra n satisfying J2
z = ⟨Sz, z⟩A for all z ∈ z, where S is

a positive definite symmetric operator on z and A is a negative definite
symmetric operator on v.

1. Introduction

Let n denote a finite dimensional Lie algebra over the real numbers. The Lie
algebra n is called 2-step nilpotent Lie algebra if [x, [y, z]] = 0 for any x, y, z ∈
n. A Lie group N is said to be 2-step nilpotent if its Lie algebra n is 2-step
nilpotent. Throughout, N will denote a simply connected, 2-step nilpotent Lie
group with Lie algebra n having center z. We shall use ⟨ , ⟩ to denote either
an inner product on n or the induced left-invariant Riemannian metric tensor
on N . Let v denote the orthogonal complement of z in n .

Each element z of z defines a skew symmetric linear map Jz : v −→ v given
by Jz(x) = (adx)∗(z) for all x ∈ v, where (adx)∗(z) is the adjoint of adx relative
to the inner product ⟨ , ⟩. More usefully Jz is defined by the equation

(1.1) ⟨Jz(x), y⟩ = ⟨[x, y], z⟩
for all x, y ∈ v. A 2-step nilpotent Lie group N with its Lie algebra n is called
H-type if it satisfies

J2
z = −⟨z, z⟩I for all z ∈ z.

The J-map was firstly introduced by A. Kaplan and used to study geometries of
H-type groups [9, 10]. Also various aspects of H-type groups were investigated
by Berndt, Tricerri, and Vanhecke [1]. The first general studies for 2-step
nilpotent Lie groups were done by P. Eberlein [2, 3] and some related works
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followed. Especially, in 1997, Walschap [14] showed that for a nonsingular 2-
step nilpotent Lie group with one dimensional center, the cut locus and the
conjugate locus coincide, and he made an explicit determination of all first
conjugate points in such a group. Gornet and Mast [4] showed that the first
cut point of the starting point γ(0) along a unit speed geodesic γ with initial
velocity γ′(0) = x0 + z0 for x0 ∈ v and z0 ∈ z in a simply connected 2-step
nilpotent Lie group N does not occur before length 2π

θ(z) , where θ(z) is the
biggest of the norms of the eigenvalues of the skew-symmetric map Jz. Jang
and Park later gave explicit formulas for all conjugate points along geodesics
in any 2-step nilpotent Lie groups with one dimensional center [6]. And J. Kim
[11] calculated all conjugate points of H-type groups. These last two works are
generalized in a pseudo-Riemannian version by Jang, Parker, and Park [7, 8]. J.
Lauret [13] introduced the notion of modified H-type by weakening the H-type
condition.

Definition 1.1. A 2-step nilpotent Lie group (N, ⟨ , ⟩) is said to be a modified
H-type group if for any nonzero z ∈ z

J2
z = λ(z)I for some λ(z) < 0

or equivalently,

J2
z = −⟨Sz, z⟩I for some positive definite symmetric operator S on z.

In [12], Y. Kim calculated all conjugate points along geodesics in a modified
H-type group with two dimensional center.

More generally we can consider a class of 2-step nilpotent Lie groups (N, ⟨ , ⟩)
satisfying the following condition

(1.2) J2
z = ⟨Sz, z⟩A for all z ∈ z,

where S is a positive definite symmetric operator on z and A is a negative
definite symmetric operator on v. Note that this class of 2-step nilpotent
Lie groups contains all 2-step nilpotent groups with one dimensional center
and all H-type groups, even all modified H-type groups. The definiteness of
two operators A and S in (1.2) implies that we are in the nonsingular case,
i.e., the map Jz has never zero eigenvalues. The main purpose of this paper
is to characterize Jacobi fields and calculate all conjugate points and their
multiplicities in a simply connected 2-step nilpotent Lie group N satisfying
(1.2). Since N is endowed with a left invariant metric, we will only consider
Jacobi fields and conjugate points along geodesics emanating from the identity
element of N . In the remaining of this section we recall some facts about
conjugate points. Also we will investigate some properties of simply connected
2-step nilpotent Lie groups satisfying (1.2) and state main results of this paper.
In Section 2, we will give proofs of main results.

To study conjugate points, we use the Jacobi operator.
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Definition 1.2. Along the geodesic γ, the Jacobi operator is given by

R γ̇ • = R( • , γ̇)γ̇ ,

where R denotes the Riemannian curvature tensor.

For the reader’s convenience, we recall that a Jacobi field along γ is a vector
field along γ which is a solution of the Jacobi equation

∇2
γ̇Y (t) + R γ̇Y (t) = 0

along γ, where ∇ denotes the Riemannian connection. The point γ(t0) is
conjugate to the point γ(0) if and only if there exists a nontrivial Jacobi field
Y along γ such that Y (0) = Y (t0) = 0. The multiplicity of γ(t0) is equal to the
number of linearly independent of Jacobi fields Y (t) with Y (0) = Y (t0) = 0
and will be denoted by multcp(t0). We will identify an element of n with a left
invariant vector field on N since TeN may be identified with n, where e denotes
the identity element of N .

For the reader’s convenience, we provide the statement of Proposition 2.1
from [7].

Proposition 1.3. Let γ be a geodesic in a simply connected 2-step nilpotent
group N with γ(0) = e and γ̇(0) = z0 + x0 ∈ z ⊕ v = n. A vector field
Y (t) = z(t) + etJu(t) along γ, where z(t) ∈ z and u(t) ∈ v for each t, is a
Jacobi field if and only if

ż(t) − [etJu(t), etJx0] = ζ ,

etJ ü(t) + etJJu̇(t) − Jζe
tJx0 = 0 ,

where J = Jz0 and ζ ∈ z is a constant and etJ =
∑∞

n=0
tnJn

n! .

The following example shows one way to construct 2-step nilpotent Lie
groups satisfying (1.2) from a finite collection of H-type Lie algebras with same
dimensional centers.

Example 1.4. Let {ni|i = 1, . . . ,m} be a finite collection of H-type Lie alge-
bras with metrics ⟨ , ⟩i and bracket operations [ , ]i and let ni = zi ⊕ vi be
their orthogonal decompositions, where zi and vi are centers and orthogonal
complements, respectively for i = 1, . . . ,m. Assume that all dimensions of the
centers zi are equal. Then without loss of generality we may assume that all zi

are same space with the metric ⟨ , ⟩1 and denote it by z. Subsequently we have
a new H-type algebra n = z ⊕ v1 ⊕ · · · ⊕ vm with center z and its orthogonal
complements v1 ⊕ · · · ⊕ vm by giving a new metric ⟨ , ⟩

⟨z1 +
m∑

i=1

xi, z2 +
m∑

i=1

yi⟩ = ⟨z1, z2⟩1 +
m∑

i=1

⟨xi, yi⟩i

for z1, z2 ∈ z and xi, yi ∈ vi, i = 1, . . . ,m and a new bracket operation [ , ]

[
m∑

i=1

xi,

m∑
i=1

yi] =
m∑

i=1

[xi, yi]i
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for xi, yi ∈ vi, i = 1, . . . ,m. For a positive definite symmetric operator S on z
and positive distinct reals λ1, . . . , λm, we now give a new metric ⟨⟨ , ⟩⟩ on n by

⟨⟨z1 +
m∑

i=1

xi, z2 +
m∑

i=1

yi⟩⟩ = ⟨Sz1, z2⟩ +
m∑

i=1

⟨ 1
λi

xi, yi⟩,

where xi, yi ∈ vi, z1, z2 ∈ z and ⟨ , ⟩ denotes the H-type metric on n. Let J∗
z

and Jz be as in (1.1) for ⟨⟨ , ⟩⟩ and ⟨ , ⟩ respectively. Then we have

⟨⟨J∗
z

m∑
i=1

xi,

m∑
i=1

yi⟩⟩ = ⟨⟨z, [
m∑

i=1

xi,

m∑
i=1

yi]⟩⟩ = ⟨⟨z,

m∑
i=1

[xi, yi]⟩⟩

=
m∑

i=1

⟨⟨z, [xi, yi]⟩⟩ =
m∑

i=1

⟨Sz, [xi, yi]⟩

=
m∑

i=1

⟨JSzxi, yi⟩ =
m∑

i=1

⟨⟨λiJSzxi, yi⟩⟩

= ⟨⟨JSz

m∑
i=1

λixi,
m∑

i=1

yi⟩⟩

= ⟨⟨JSz

m∑
i=1

√
−Axi,

m∑
i=1

yi⟩⟩

= ⟨⟨JSz

√
−A

m∑
i=1

xi,

m∑
i=1

yi⟩⟩

for z ∈ z, xi, yi ∈ vi and the operators A = −λ2
i I,

√
−A = λiI on each

subspaces vi, i = 1, . . . ,m. Thus we get J∗
z = JSz

√
−A for any z ∈ z. This and

commutativity between
√
−A and JSz imply that

(J∗
z )2 = J2

Sz(−A) = (−⟨Sz, Sz⟩I)(−A) = ⟨⟨Sz, z⟩⟩A.

Thus the simply connected 2-step nilpotent Lie group N with its Lie algebra n
and a left invariant metric ⟨⟨ , ⟩⟩ is a group satisfying (1.2).

The following proposition shows that the above examples exhaust all possi-
bilities for 2-step nilpotent Lie groups satisfying (1.2) and shows some elemen-
tary properties of such groups.

Proposition 1.5. Let N be a 2-step nilpotent group with a left invariant metric
⟨⟨ , ⟩⟩ satisfying (1.2) and let −λ2

1, . . . ,−λ2
m be all distinct eigenvalues of A.

Then for z the center of the Lie algebra n of N and vi the eigenspace of A
corresponding to −λ2

i the followings hold.
(1) Every subspace vi of the orthogonal complement v of z is Jz-invariant

and AJz = JzA for all z ∈ z.
(2) vi ⊥ vj for i ̸= j, i, j = 1, 2, . . . ,m.
(3) [vi, vj ] = {0} for i ̸= j, i, j = 1, 2, . . . ,m and Jzvi ⊂ vi for every z ∈ z,

i = 1, 2, . . . ,m.



CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS 1709

(4) Each subspace z⊕vi of n, i = 1, . . . ,m is a modified H-type Lie algebra.
(5) The metric ⟨ , ⟩ on n defined by

(1.3) ⟨x + z, y + w⟩ = ⟨⟨(
√
−A)x, y⟩⟩ + ⟨⟨S−1z, w⟩⟩

for x, y ∈ v =
∑m

i=1 vi and z, w ∈ z is an H-type metric.

Proof. Since properties 1, 2, and 3 directly follows from (1.1) and (1.2), we
omit proofs of them. It is clear that z ⊕ vi is a subalgebra of n for every
i ∈ {1, 2, . . . ,m}. Also we can see that J2

z x = −λ2
i ⟨⟨Sz, z⟩⟩x for every x ∈ vi

and every z ∈ z. This means that J2
z = −⟨⟨S′z, z⟩⟩I on vi for every z ∈ z and

S′ = λ2
i S. So z ⊕ vi is a modified H-type Lie algebra.

For a z ∈ z let J∗
z be as in (1.1) for the metric ⟨ , ⟩ defined by (1.3). Then

we find

⟨J∗
z x, y⟩ = ⟨z, [x, y]⟩ = ⟨⟨S−1z, [x, y]⟩⟩

= ⟨⟨JS−1zx, y⟩⟩ = ⟨
√
−A

−1
JS−1zx, y⟩

for every x, y ∈ v =
∑m

i=1 vi. This implies that J∗
z =

√
−A

−1
JS−1z. Thus we

have (J∗
z )2 = (−A)−1⟨⟨SS−1z, S−1z⟩⟩A = ⟨⟨z, S−1z⟩⟩(−I) = −⟨z, z⟩I. ¤

Here are some characterizations on 2-step nilpotent groups satisfying J2
z =

⟨Sz, z⟩A, which will be useful for computations.

Lemma 1.6. Let N be a simply connected nonsingular 2-step nilpotent group
endowed with a left invariant metric ⟨ , ⟩. Then for a positive definite sym-
metric operator S on the center z of its Lie algebra n and a negative definite
symmetric operator A on the orthogonal complement v of z the following state-
ments for N are all equivalent.

(1) The equality J2
z = ⟨Sz, z⟩A holds for all z ∈ z.

(2) The equality JzJz′ + Jz′Jz = 2⟨Sz, z′⟩A holds for all z, z′ ∈ z.
(3) The equality ⟨Jzx, Jz′x⟩ = −⟨Sz, z′⟩⟨Ax, x⟩ holds for all z, z′ ∈ z and

for all x ∈ v.
(4) The equality ⟨Jzx, Jzy⟩ = −⟨Sz, z⟩⟨Ax, y⟩ holds for all z ∈ z and for

all x, y ∈ v.
(5) The equality [x, Jzx] = −⟨Ax, x⟩Sz holds for all x ∈ v and z ∈ z.

Proof. To prove all equivalences we can proceed in the cyclic order (1) ⇒ (2) ⇒
(3) ⇒ (4) ⇒ (5) ⇒ (1). Since all steps can be verified in standard ways by
polarization or by the fact that ⟨Jzx, y⟩ = −⟨x, Jzy⟩ for all x, y ∈ v and z ∈ z,
here we only show the step (5) ⇒ (1). By hypothesis (5), we get

[x + y, Jz(x + y)] = −⟨A(x + y), x + y⟩Sz

for all x, y ∈ v and for all z ∈ z. This and hypothesis (5) implies that

[x, Jzy] + [y, Jzx] = −2⟨Ax, y⟩Sz

for all x, y ∈ v and for all z ∈ z. Thus we have

⟨z, [x, Jzy] + [y, Jzx]⟩ = −2⟨Ax, y⟩⟨Sz, z⟩



1710 CHANGRIM JANG, TAEHOON LEE, AND KEUN PARK

for all x, y ∈ v and for all z ∈ z. From this it follows that

⟨J2
z x, y⟩ = ⟨Sz, z⟩⟨Ax, y⟩

for all x, y ∈ v and for all z ∈ z. This imply that J2
z = ⟨Sz, z⟩A for all z ∈ z. ¤

Corollary 1.7. Let N be a simply connected 2-step nilpotent Lie group with
its Lie algebra n = z ⊕ v satisfying (1.2). Then the following equalities holds

[Jz1Jz2x, Jz1x] = −⟨Sz1, z1⟩λ2[Jz2x, x],

[Jz2x, Jz1x] = [Jz1Jz2x, x],

for all z1, z2 ∈ z with ⟨Sz1, z2⟩ = 0 and eigenvector x of A with an eigenvalue
−λ2.

Proof. By items (2) and (5) in Lemma 1.6 we have

[Jz1Jz2x, Jz1x] = −⟨AJz1x, Jz1x⟩Sz2 = ⟨J2
z1

Ax, x⟩Sz2

= −⟨Sz1, z1⟩λ2⟨Ax, x⟩Sz2 = ⟨Sz1, z1⟩λ2[x, Jz2x],

which proves the first equality. Note that

⟨z1, [Jz2x, Jz1x]⟩ = ⟨−J2
z1

Jz2x, x⟩ = λ2⟨Sz1, z1⟩⟨Jz2x, x⟩ = 0

and
⟨z1, [Jz1Jz2x, x]⟩ = ⟨J2

z1
Jz2x, x⟩ = −λ2⟨Sz1, z1⟩⟨Jz2x, x⟩ = 0.

Also we have for every ζ ∈ z with ⟨Sζ, z1⟩ = 0

⟨ζ, [Jz2x, Jz1x]⟩ = ⟨JζJz1Jz2x, x⟩ = ⟨ζ, [Jz1Jz2x, x]⟩.

These three equalities imply that

⟨z, [Jz2x, Jz1x]⟩ = ⟨z, [Jz1Jz2x, x]⟩

for all z ∈ z. So we can conclude that the second equality holds. ¤

From now on, N will denote a simply connected 2-step nilpotent Lie group
with a left invariant metric ⟨ , ⟩ satisfying (1.2) for a fixed negative definite
symmetric operator A on v and a fixed positive definite symmetric operator
S on z. Assume that z and v are decomposed as direct sums ⊕l

k=1zk and
⊕m

i=1vi, respectively where zk and vi are eigenspaces of S and A corresponding
to eigenvalues αk and −λ2

i , respectively. For simplicity we will use the notation

µi =
√

⟨Sz0, z0⟩λi

for i = 1, 2, . . . ,m.
Let γ be a geodesic in N with γ(0) = e and γ̇(0) = z0 + x0 ∈ z ⊕ v,

respectively, and let J = Jz0 . We may assume γ is normalized so that ⟨γ̇, γ̇⟩ = 1.
As usual, Z∗ denotes the set of all integers with 0 removed.
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Remark 1.8. We adapt the usual notation from number theory and write a|b
to denote that b is a nonzero integral multiple of a for real a, b. Otherwise we
write a - b. It seems necessary to explain the meanings of some summations
and direct sums subscripted by these division notations, which will be found
in the following results. In the statements and proofs of Propositions 1.11-
12, Theorem 1.13 and Corollary 1.14,

∑
λi
n |λh

and
∑

λi
n -λh

mean a summation
over all h in the set {1, 2, . . . ,m} that have the property that λh is an integral
multiple of λi/n and a summation over all h in the set {1, 2, . . . ,m} that do
not have the property, respectively (Please note that the integers i and n are
fixed in both cases). The direct sums are similarly explained.

From (1.2) and etJ =
∑∞

n=0
(tJ)n

n! we have

(1.4) etJ = cos(µit)I +
1
µi

sin(µit)J, on vi

for i = 1, 2, . . . ,m. The following lemma is useful to understand multiplicity
equations in the statements of our results and proofs of main results.

Lemma 1.9. The operator (e±tJ − I) : vi −→ vi, i = 1, 2, . . . ,m is either the
zero map or an invertible map depending on whether t is an integral multiple of
2π
µi

or not, respectively. For t = 2π
µi

n, where n ∈ Z∗, the orthogonal complement
v of z in n is orthogonally decomposed into

v = Im(e±tJ − I)
⊕

ker(e±tJ − I),

where Im(e±tJ − I) =
⊕

λi
n -λh

vh and ker(e±tJ − I) =
⊕

λi
n |λh

vh.

For completeness we will state characterizations of Jacobi fields and cal-
culations of conjugate points in simple cases which can be derived by direct
calculation using Proposition 1.3.

Proposition 1.10. Under these assumptions, the following hold.
(1) if z0 = 0 and x0 ̸= 0, then a vector field Y (t) = z(t) + u(t) along γ

with z(t) ∈ z, u(t) ∈ v for every t is a Jacobi field with Y (0) = 0 if and
only if z(t) = t3

6 ⟨Ax0, x0⟩Sζ + t2

2 [v, x0] + tζ and u(t) = t2

2 Jζx0 + tv for
a vector v ∈ v and a vector ζ ∈ z.

(2) if z0 ̸= 0 and x0 = 0, then a vector field Y (t) = z(t) + etJu(t) along γ
with z(t) ∈ z, u(t) ∈ v and J = Jz0 is a Jacobi field with Y (0) = 0 if
and only if z(t) = tζ and u(t) = (e−tJ − I)v for a vector ζ ∈ z and a
vector v ∈ v.

Proposition 1.11. Under these assumptions, the following hold.
(1) if z0 = 0 and x0 ̸= 0, then there is no conjugate point to γ(0) along γ;
(2) if z0 ̸= 0 and x0 = 0, then γ(t) is conjugate to γ(0) along γ if and only

if

t ∈ ∪m
i=1

2π

µi
Z∗,
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and multcp( 2π
µi

n) =
∑

λi
n |λh

dim vh.

Now we will state the main results of this paper which will be proved in
Section 2 of this paper. We will use properties 1-3 in Proposition 1.5 without
comments.

Proposition 1.12. Let γ be a geodesic of N with γ(0) = e and γ′(0) = z0+x0,
z0 ̸= 0 ̸= x0. Also assume that x0 is decomposed as x0 =

∑m
i=1 xi, where

xi ∈ vi for i = 1, . . . ,m. Then a vector field Y (t) = z(t) + etJu(t) along γ with
z(t) ∈ z, u(t) ∈ v for all t and J = Jz0 is a Jacobi field with Y (0) = 0 if and
only if z(t) and u(t) are given by (1.6) and (1.5) for a constant c , a constant
vector ζ ∈ z, ⟨Sz0, ζ⟩ = 0 and a vector v0 =

∑m
i=1 vi, vi ∈ vi, i = 1, 2, . . . ,m.

(1.5) u(t) = ctx0 + (e−tJ − I)v0 +
1

2⟨Sz0, z0⟩
(e−2tJ − e−tJ)A−1Jζx0,

(1.6)

z(t) =
m∑

i=1

(
1
µi

sin µit −
1
2
t − 1

4µi
sin 2µit)

[
vi, xi

]
+

m∑
i=1

(
1

2µ3
i

sin µit −
1

2µ2
i

t)
[
Jζxi, xi

]
+

m∑
i=1

1
µ2

i

(
3
4
− cos µit +

1
4

cos 2µit)
[
vi, Jxi

]
+

m∑
i=1

1
2µ4

i

(1 − cos µit)
[
Jζxi, Jxi

]
+

m∑
i=1

1
2µ2

i

(
1

2µi
sin 2µit − t)

[
Jvi, Jxi

]
+

m∑
i=1

1
4µ2

i

(cos 2µit − 1)
[
Jvi, xi

]
+ (czo + ζ)t.

Theorem 1.13. Let γ be such a geodesic in N with z0 ̸= 0 ̸= x0. Also assume
that z0 and x0 are decomposed as z0 =

∑l
k=1 zk and x0 =

∑m
i=1 xi, where

zk ∈ zk for k = 1, . . . , l and xi ∈ vi for i = 1, . . . ,m. Then γ(t0) is conjugate
to γ(0) along γ if and only if either

t0 ∈ ∪m
i=1

2π

µi
Z∗,

or

(1.7) t0 ∈ B =

{
t ∈ R

∣∣∣∣ l∑
k=1

αk(1 + αkh1(t))
t + αkh2(t)

⟨zk, zk⟩ = 0

}
,



CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS 1713

where

(1.8) h1(t) =
m∑

i=1

(1 − µit

2
cot

µit

2
)
⟨xi, xi⟩
⟨Sz0, z0⟩

and

(1.9) h2(t) =
m∑

i=1

1
2µ3

i

(sin µit − µit)⟨Axi, xi⟩.

If t0 ∈ B, then multcp(t0) = 1. For t0 = 2πn
µi

, the multiplicity is as follows.
If x0 /∈ Im(e−t0J − I) =

⊕
λi
n ̸ |λh

vh, then

multcp(t0) = dimker(e−t0J − I) − 1.

If x0 ∈ Im(e−t0J − I), then

multcp(t0) =


dimker(et0J − I) + 1 if

l∑
k=1

αk(1 + αkh3(t0))
t0 + αkh4(t0)

⟨zk, zk⟩ = 0

dimker(et0J − I) if
l∑

k=1

αk(1 + αkh3(t0))
t0 + αkh4(t0)

⟨zk, zk⟩ ̸= 0,

where

(1.10) h3(t) =
∑

λi
n -λh

(1 − µht

2
cot

µht

2
)
⟨xh, xh⟩
⟨Sz0, z0⟩

and

(1.11) h4(t) =
∑

λi
n -λh

1
2µ3

h

(sin µht − µht)⟨Axh, xh⟩.

Corollary 1.14 ([6, Theorem 2]). Let γ be such a geodesic in a 2-step nilpotent
group N whose Lie algebra n has one dimensional center z with z0 ̸= 0 ̸= x0.
And let −λ2

1,−λ2
2, . . . ,−λ2

m be all distinct eigenvalues of J2
z for a unit vector

z in the center z. Then for the decomposition x0 =
∑m

i=1 xi, (xi is contained
the eigenspace of J2

z , vi with respect to the eigenvalue −λ2
i , i = 1, . . . ,m)

and µi =
√
⟨z0, z0⟩λi, i = 1, . . . ,m, γ(t0) is conjugate to γ(0) if and only if

t0 ∈ ∪m
i=1

2π
µi

Z∗ ∪ B, where

(1.12) B =

{
t ∈ R

∣∣∣∣ m∑
i=1

⟨xi, xi⟩
µit

2
cot

µit

2
= 1

}
.

If t0 ∈ B, then multcp(t0) = 1. For t0 = 2πn
µi

, the multiplicity are as follows.
If x0 - Im(e−t0J − I) =

⊕
λi
n -λh

vh, then

multcp(t0) = dimker(e−t0J − I) − 1.
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If x0 ∈ Im(e−t0J − I), then

multcp(t0) =


dimker(et0J − I) + 1 if

∑
λi
n -λh

µht0⟨xh, xh⟩
2

cot
µht

2
= 1

dimker(et0J − I) if
∑

λi
n -λh

µht0⟨xh, xh⟩
2

cot
µht

2
̸= 1.

Proof. Let z be a unit vector in the center z of the Lie algebra n. Since z is
one dimensional, there exists a constant c such that z0 = cz. then we have
J2

z0
= c2J2

z = ⟨z0, z0⟩J2
z . Thus, the given group N satisfies (1.2) with S = I

and A = J2
z .

So, we can apply results of Theorem 1.13 to this group N . Since S = I, we
may assume that α1 = α2 = · · · = αk = 1 in (1.7).

This imply that the condition
l∑

k=1

αk(1 + αkh1(t))
t + αkh2(t)

⟨zk, zk⟩ = 0 in (1.7)

can be simplified as

(1.13) 1 + h1(t) = 0,

where

h1(t) =
m∑

i=1

(
1 − µit

2
cot

µit

2

)
⟨xi, xi⟩
⟨z0, z0⟩

, (µi = λi|z0|).

Multiplying the value ⟨z0, z0⟩ at both sides of (1.13), we have

⟨z0, z0⟩ +
m∑

i=1

(
1 − µit

2
cot

µit

2

)
⟨xi, xi⟩ = 0

or

⟨z0, z0⟩ +
m∑

i=1

⟨xi, xi⟩ −
m∑

i=1

⟨xi, xi⟩
(

µit

2
cot

µit

2

)
= 0.

Since
∑m

i=1⟨xi, xi⟩ = ⟨x0, x0⟩, the above equation becomes
m∑

i=1

⟨xi, xi⟩
(

µit

2
cot

µit

2

)
= 1.

Therefore γ(t0) is conjugate to γ(0) if and only if t0 ∈ ∪m
i=1

2π
µi

Z∗ ∪B, where
B is the set defined by (1.12).

When t0 = 2πn
µi

= 2πn
|z0|λi

, the condition

l∑
k=1

αk(1 + αkh3(t0))
t0 + αkh4(t0)

⟨zk, zk⟩ = 0,
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where h3(t) and h4(t) are given by (1.10) and (1.11) with S = I becomes

1 + h3(t0) = 0

because of α1 = · · · = αl = 1.
If x0 ∈ Im(e−t0J − I), then x0 is decomposed as x0 =

∑
λi
n -λh

xh, where
xh ∈ vh.

As before
1 + h3(t0) = 0

is equivalent to ∑
λi
n -λh

µht0⟨xh, xh⟩
2

cot
µht0

2
= 1.

So we have the desired multiplicity formulas. ¤
To derive the following corollary from Theorem 1.13, we need to note that

if N is H-type, then e−t0J = I for every t0 ∈ 2π
|z0|Z

∗.

Corollary 1.15 ([1, 8]). Let γ be such a geodesic in an H-type group N ,
z0 ̸= 0 ̸= x0. Then γ(t0) is conjugate to γ(0) if and only if t0 ∈ 2π

|z0|Z
∗ ∪ B,

where

B =
{

t ∈ R
∣∣∣∣ ⟨x0, x0⟩

|z0|t
2

cot
|z0|t
2

= 1
}

.

If t0 ∈ B, then multcp(t0) = 1. If t0 = 2πn
|z0| , multcp(t0) = dim v − 1.

2. Proofs of main results

Proof of Proposition 1.12. Assume that Y (t) = z(t) + etJu(t) is a nontrivial
Jacobi field along γ with Y (0) = 0. Then by Proposition 1.3 and the fact that
the center z of the Lie algebra n can be decomposed into a direct sum z = [[z0]]⊕
[[Sz0]]⊥ of the subspace [[z0]] generated by the vector z0 and the orthogonal
complement of [[Sz0]], [[Sz0]]⊥, which is not an orthogonal decomposition in
general, we may assume that

ż(t) − [etJu(t), etJx0] = cz0 + ζ,(2.1)

etJ ü(t) + etJJu̇(t) − Jcz0+ζe
tJx0 = 0(2.2)

for a constant c and a constant vector ζ ∈ z with

(2.3) ⟨Sz0, ζ⟩ = 0.

By direct computations we can show that the general solution of equation
(2.2) satisfying u(0) = 0 is given by (1.5). To show this, we used the fact that
e−tJJζ = Jζe

tJ ; this follows from item (2) in Lemma 1.6 and (2.3). Since v0 in
(1.5) is decomposed as v0 =

∑m
i=1 vi, where vi is contained in the eigensubspace

vi of A, substituting (1.5) for u(t) in (2.1) gives us

(2.4) ż(t) −
m∑

i=1

[
vi − etJvi +

1
2⟨Sz0, z0⟩

(e−tJ − I)A−1Jζxi, e
tJxi

]
= cz0 + ζ .
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Using (1.4), from (2.4) we find

ż(t) −
m∑

i=1

[
(1 − cos µit)vi −

1
µi

sinµitJvi −
1

2µ2
i

{(cos µit − 1)I

− 1
µi

sinµitJ}Jζxi, cos µitxi +
1
µi

sin µitJxi

]
= cz0 + ζ

or

ż(t) −
m∑

i=1

[
vi +

1
2µ2

i

Jζxi, cos µitxi +
1
µi

sin µitJxi

]
+

m∑
i=1

cos2 µit
[
vi +

1
2µ2

i

Jζxi, xi

]
+

m∑
i=1

1
µ2

i

sin2 µit
[
Jvi −

1
2µ2

i

JJζxi, Jxi

]
+

m∑
i=1

1
µi

cos µit sin µit{
[
vi +

1
2µ2

i

Jζxi, Jxi

]
+

[
Jvi −

1
2µ2

i

JJζxi, xi

]
}

= czo + ζ.

Integrating this under the condition z(0) = 0, we have

z(t) =
m∑

i=1

[
vi +

1
2µ2

i

Jζxi,
1
µi

sinµitxi +
1
µ2

i

(1 − cos µit)Jxi

]
−

m∑
i=1

1
2
(t +

1
2µi

sin 2µit)
[
vi +

1
2µ2

i

Jζxi, xi

]
−

m∑
i=1

1
2µ2

i

(t − 1
2µi

sin 2µit)
[
Jvi −

1
2µ2

i

JJζxi, Jxi

]
−

m∑
i=1

1
4µ2

i

(1 − cos 2µit){
[
vi +

1
2µ2

i

Jζxi, Jxi

]
+

[
Jvi −

1
2µ2

i

JJζxi, xi

]
}

+ (czo + ζ)t

or

z(t) =
m∑

i=1

(
1
µi

sinµit −
1
2
t − 1

4µi
sin 2µit)

[
vi, xi

]
+

m∑
i=1

(
1

2µ3
i

sinµit −
1

4µ2
i

t − 1
8µ3

i

sin 2µit)
[
Jζxi, xi

]
+

m∑
i=1

1
µ2

i

(
3
4
− cos µit +

1
4

cos 2µit)
[
vi, Jxi

]
+

m∑
i=1

1
2µ4

i

(
3
4
− cos µit +

1
4

cos 2µit)
[
Jζxi, Jxi

]
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+
m∑

i=1

1
2µ2

i

(
1

2µi
sin 2µit − t)

[
Jvi, Jxi

]
+

m∑
i=1

1
4µ4

i

(t − 1
2µi

sin 2µit)
[
JJζxi, Jxi

]
+

m∑
i=1

1
4µ2

i

(cos 2µit − 1)
[
Jvi, xi

]
+

m∑
i=1

1
8µ4

i

(1 − cos 2µit)
[
JJζxi, xi

]
+ (czo + ζ)t.

Since [JJζxi, Jxi] = −µ2
i [Jζxi, xi] and [Jζxi, Jxi] = [JJζxi, xi] by Corol-

lary 1.7, the above equation becomes (1.6). We showed that if a vector field
Y (t) = z(t)+etJu(t) along γ is a Jacobi field with Y (0) = 0, then u(t) and z(t)
must be of the forms (1.5) and (1.6) respectively for a constant c, a vector ζ ∈ z
which is orthogonal to the vector Sz0 and a vector v0 =

∑m
i=1 vi ∈ ⊕m

i=1vi.
Conversely it is easy to see that such Y (t) is a Jacobi field along γ with
Y (0) = 0. ¤

Proof of Theorem 1.13. First Assume that γ(t0) is a conjugate point along γ.
Then there exists a nontrivial Jacobi field Y (t) = z(t) + etJu(t) along γ for
z(t) ∈ z and u(t) ∈ v satisfying Y (0) = Y (t0) = 0. By Proposition 1.11 we
may assume u(t) and z(t) are of the forms (1.5) and (1.6) respectively for a
constant c, a vector ζ ∈ z with (2.3) and a vector v0 =

∑m
i=1 vi ∈ ⊕m

i=1vi = v.
Now assume that t0 /∈ ∪m

i=1
2π
µi

Z∗, which implies that e−t0J − I is invertible on
v by Lemma 1.9. Then since u(t0) = 0, we have

(2.5) vi = −(e−t0J − I)−1ct0xi +
1

2µ2
i

e−t0JJζxi, i = 1, 2, . . . ,m.

Using (1.4) and the following identity(
e−t0J − I

)−1
= −1

2
I +

1
2µi

cot
µit0
2

J on vi

for i = 1, 2, . . . ,m, from (2.5) we have

vi =
1
2
ct0xi −

ct0
2µi

cot
µit0
2

Jxi +
1

2µ2
i

cos µit0Jζxi −
1

2µ3
i

sinµit0JJζxi

for i = 1, 2, . . . ,m. This implies

[vi, xi] = − ct0
2µi

cot
µit0
2

[Jxi, xi] +
1

2µ2
i

cos µit0[Jζxi, xi]

− 1
2µ3

i

sin µit0[JJζxi, xi],
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=
1
2
ct0[xi, Jxi] +

1
2µ2

i

cos µit0[Jζxi, Jxi] −
1

2µ3
i

sinµit0[JJζxi, Jxi],

[Jvi, Jxi] =
ct0µi

2
cot

µit0
2

[xi, Jxi] +
1

2µ2
i

cos µit0[JJζxi, Jxi]

+
1

2µi
sin µit0[Jζxi, Jxi],

[Jvi, xi] =
1
2
ct0[Jxi, xi] +

1
2µ2

i

cos µit0[JJζxi, xi]

+
1

2µi
sin µit0[Jζxi, xi], i = 1, 2, . . . ,m.

Replacing these into (1.6) and after some computations we find

(2.6)

z(t)

= ct0

m∑
i=1

(
1
2

+
1
2

sinµit cot
µit0
2

− 1
2

cos µit −
µit

2
cot

µit0
2

)
⟨xi, xi⟩
⟨Sz0, z0⟩

Sz0

+
m∑

i=1

1
2µi

(sin µi(t0 − t) +
1
2

sinµi(2t − t0)

+ µit − sinµit −
1
2

sin µit0)
⟨xi, xi⟩
⟨Sz0, z0⟩

Sζ

+
m∑

i=1

1
4µ4

i

(2 + cos µi(2t − t0) + cos µit0

− 2 cos µi(t − t0) − 2 cos µit)[Jζxi, Jxi]

+ (czo + ζ)t.

From (2.6) we find

z(t0) = ct0

m∑
i=1

(1 − µit0
2

cot
µit0
2

)
⟨xi, xi⟩
⟨Sz0, z0⟩

Sz0

+
m∑

i=1

1
2µi

(µit0 − sinµit0)
⟨xi, xi⟩
⟨Sz0, z0⟩

Sζ

+(czo + ζ)t0.

Then we have

(2.7) z(t0) = ct0h1(t0)Sz0 + h2(t0)Sζ + ct0z0 + t0ζ

for h1(t) and h2(t) given by (1.8) and (1.9). Let z0 =
∑l

k=1 zk, ζ =
∑l

k=1 ζk ∈
⊕l

k=1zk be decompositions of z0 and ζ, where the zk are the eigenspaces of the
operator S with the corresponding eigenvalues αk. Then z(t0) = 0 and (2.7)
imply

(2.8) ζk = −ct0(1 + αkh1(t0))
t0 + αkh2(t0)

zk
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for every k ∈ {1, 2, . . . , l}. This and (2.3) imply that

c
l∑

k=1

αk(1 + αkh1(t0))
t0 + αkh2(t0)

⟨zk, zk⟩ = 0.

Since c ̸= 0 (otherwise, Y (t) ≡ 0) we can see that t0 ∈ B. The multiplicity
follows the fact that vi and ζ are uniquely determined by c. Conversely if
t0 ∈ B, consider an arbitrary constant c and a vector ζ =

∑l
k=1 ζk for ζk given

by (2.8). Then ζ satisfies (2.3) since t0 ∈ B. Also consider vi, i = 1, . . . ,m
given by (2.5) for such c and ζ. Then a Jacobi field Y (t) = z(t) + etJu(t)
along γ, where z(t) and u(t) are given by (1.6) and (1.5) for such c, ζ, vi and
v0 =

∑m
i=1 vi satisfies Y (0) = Y (t0) = 0. Thus γ(t0) is conjugate to γ(0).

We now assume that

(2.9) t0 =
2π

µi
n for some i ∈ {1, 2, . . . ,m},

where n ∈ Z∗.
Lemma 1.9 implies that if λi

n |λh, then e−t0J − I = 0 on vh and if λi

n - λh,
then e−t0J − I is invertible on vh. We proceed with two cases separately. If
x0 /∈ Im(e−t0J − I), then u(t0) = 0 and (1.5) imply that c = 0. Thus we have

(2.10) u(t) = (e−tJ − I)v0 +
1

2⟨Sz0, z0⟩
(e−2tJ − e−tJ)A−1Jζx0 .

From (2.9), (2.10), u(t0) = 0 and Lemma 1.9 we have

v0 =
∑

λi
n |λh

vh +
∑

λi
n -λh

1
2µ2

h

e−t0JJζxh,

where each vh in the first summation is arbitrary in vh. Replacing these into
(1.6) and after some computations we have

z(t) =
∑

λi
n |λh

(
1
µh

sinµht − 1
2
t − 1

4µh
sin 2µht)

[
vh, xh

]
+

∑
λi
n |λh

(
1

2µ3
h

sinλht − 1
2µ2

h

t)
[
Jζxh, xh

]
+

∑
λi
n |λh

1
µ2

h

(
3
4
− cos µht +

1
4

cos 2µht)
[
vh, Jxh

]
+

∑
λi
n |λh

1
2µ4

h

(1 − cos µht)
[
Jζxh, Jxh

]
+

∑
λi
n |λh

1
2µ2

h

(
1

2µh
sin 2µht − t)

[
Jvh, Jxh

]
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+
∑

λi
n |λh

1
4µ2

h

(cos 2µht − 1)
[
Jvh, xh

]
+

∑
λi
n -λh

1
2µh

(sin µh(t0 − t) +
1
2

sinµh(2t − t0) + µht

− sinµht − 1
2

sin µht0)
⟨xh, xh⟩
⟨Sz0, z0⟩

Sζ

+
∑

λi
n -λh

1
4µ4

h

(2 + cos µh(2t − t0) + cos µht0 − 2 cos µh(t − t0)

− 2 cos µht)[Jζxh, Jxh] + tζ.

Since ⟨[Jvh, Jxh], ζ⟩ = −µ2
h⟨[vh, xh], ζ⟩, it follows from the above equation and

(2.9) that

⟨z(t0), ζ⟩ =
t0⟨Sζ, ζ⟩
2⟨Sz0, z0⟩

∑
λi
n |λh

⟨xh, xh⟩

+
⟨Sζ, ζ⟩

2⟨Sz0, z0⟩
∑

λi
n -λh

1
µh

(µht0 − sinµht0)⟨xh, xh⟩ + t0⟨ζ, ζ⟩.

If ζ ̸= 0, the sign of this formula coincides with the sign of t0. Thus the
condition z(t0) = 0 implies that ζ = 0 and we have

u(t) = (e−tJ − I)v0

for some v0 ∈ ker(e−t0J − I), and

(2.11)

z(t) =
∑

λi
n |λh

(
1
µh

sinµht − 1
2
t − 1

4µh
sin 2µih)

[
vh, xh

]
+

∑
λi
n |λh

1
µ2

h

(
3
4
− cos µht +

1
4

cos 2µht)
[
vh, Jxh

]
+

∑
λi
n |λh

1
2µ2

h

(
1

2µh
sin 2µht − t)

[
Jvh, Jxh

]
+

∑
λi
n |λh

1
4µ2

h

(cos 2µht − 1)
[
Jvh, xh

]
for the decomposition v0 =

∑
λi
n |λh

vh, vh ∈ vh. (2.9) and (2.11) imply that

(2.12) z(t0) = − t0
2

∑
λi
n |λh

([vh, xh] +
1
µ2

h

[Jvh, Jxh]).
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Since ⟨[Jvh, Jxh], ζ⟩ = −µ2
h⟨[vh, xh], ζ⟩ holds for every vector ζ ∈ z with

⟨Sζ, z0⟩ = 0, it follows from (2.12) that

⟨z(t0), ζ⟩ = 0

for every vector ζ ∈ z with ⟨Sζ, z0⟩ = 0. Thus the condition z(t0) = 0 is
equivalent to

⟨z(t0), z0⟩ = t0
∑

λi
n |λh

⟨vh, Jxh⟩ = t0⟨v0, Jx0⟩ = 0.

Therefore z(t0) = 0 is equivalent to ⟨v0, Jx0⟩ = 0. Since Jx0 is not perpen-
dicular to the subspace ker(e−t0J − I) by the condition x0 /∈ Im(et0J − I) and
Lemma 1.9, the multiplicity is dim ker(e−t0J − I) − 1.

Now assume that x0 ∈ Im(e−t0J − I) and γ(t0) is conjugate to γ(0) along γ
for t0 = 2π

µi
n. Then x0 =

∑
λi
n -λh

xh by Lemma 1.9. This and u(t0) = 0 imply
that

(2.13) vh = −(e−t0J − I)−1ct0xh +
1

2µ2
h

e−t0JJζxh

for h with λi

n - λh, and vh are arbitrary for h with λi

n |λh. Replacing these into
(1.6) and after some computations we get

z(t0) =

 ∑
λi
n -λh

(ct0 −
ct20µh

2
cot

µht0
2

)
⟨xh, xh⟩
⟨Sz0, z0⟩

 Sz0

+

 ∑
λi
n -λh

1
2µ3

h

(sin µht0 − λht0)⟨Axh, xh⟩

 Sζ + (cz0 + ζ)t0.

Then we have

z(t0) = ct0h3(t0)Sz0 + h4(t0)Sζ + ct0z0 + t0ζ

for h3(t) and h4(t) given by (1.10) and (1.11). Let z0 =
∑l

k=1 zk, ζ =∑l
k=1 ζk ∈ ⊕l

k=1zk be decompositions of z0 and ζ. Since z(t0) = 0, from
the above equation we have

(2.14) ζk = −ct0(1 + αkh3(t0))
t0 + αkh4(t0)

zk

for k = 1, 2, . . . , l. This and (2.3) imply that
l∑

k=1

c
αk(1 + αkh3(t0))

t0 + αkh4(t0)
⟨zk, zk⟩ = 0.

If
∑l

k=1
αk(1+αkh3(t0))

t0+αkh4(t0)
⟨zk, zk⟩ = 0, then a Jacobi field Y (t) satisfying Y (0) =

Y (t0) = 0 is determined by a constant c and a vector v0 ∈ ker(e−t0J −I). Thus
the multiplicity is dim ker(e−t0J − I) + 1. If

∑l
k=1

αk(1+αkh3(t0))
t0+αkh4(t0)

⟨zk, zk⟩ ̸= 0,
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then c = 0 and a Jacobi field Y (t) with Y (0) = Y (t0) = 0 is determined
by a vector v0 ∈ ker(e−t0J − I). Thus the multiplicity is dimker(e−t0J − I).
Conversely if t0 = 2π

µi
n and x0 /∈ Im(e−t0J − I), then a Jacobi field Y (t) =

z(t)+etJu(t), where u(t) = (e−tJ −I)v0, v0 ∈ ker(e−t0J −I) with ⟨v0, Jx0⟩ = 0
and z(t) is given by (2.11) for vh ∈ vh, components of the decomposition
v0 =

∑
λi
n |λh

vh. Then we can see that Y (0) = Y (t0) = 0, which implies that

γ(t0) is conjugate to γ(0) along γ. If t0 = 2π
µi

n and x0 ∈ Im(e−t0J − I), then

consider a constant c (when
∑l

k=1
αk(1+αkh3(t0))

t0+αkh4(t0)
⟨zk, zk⟩ ̸= 0 for h3(t), h4(t)

given by (1.10) and (1.11), c = 0) and a vector ζ =
∑l

k=1 ζk for ζk given by
(2.14). Also consider arbitrary vh in vh for λi

n |λh, vh given by (2.13) for λi

n - λh

and v0 =
∑

λi
n |λh

vh +
∑

λi
n -λh

vh. Then a Jacobi field Y (t) = z(t) + etJu(t),
where u(t) and z(t) are given by (1.5) and (1.6) for such c, ζ, vh and v0 satisfies
Y (0) = Y (t0) = 0, which implies γ(t0) is conjugate to γ(0) along γ. ¤
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