• 제목/요약/키워드: newton method

검색결과 1,017건 처리시간 0.028초

NEWTON-RAPHSON METHOD FOR COMPUTING p-ADIC ROOTS

  • Yeo, Gwangoo;Park, Seong-Jin;Kim, Young-Hee
    • 충청수학회지
    • /
    • 제28권4호
    • /
    • pp.575-582
    • /
    • 2015
  • The Newton-Raphson method is used to compute the q-th roots of a p-adic number for a prime number q. The sufficient conditions for the convergence of this method are obtained. The speed of its convergence and the number of iterations to obtain a number of corrected digits in the approximation are calculated.

Partial Fraction Expansions for Newton's and Halley's Iterations for Square Roots

  • Kouba, Omran
    • Kyungpook Mathematical Journal
    • /
    • 제52권3호
    • /
    • pp.347-357
    • /
    • 2012
  • When Newton's method, or Halley's method is used to approximate the pth root of 1-z, a sequence of rational functions is obtained. In this paper, a beautiful formula for these rational functions is proved in the square root case, using an interesting link to Chebyshev's polynomials. It allows the determination of the sign of the coefficients of the power series expansion of these rational functions. This answers positively the square root case of a proposed conjecture by Guo(2010).

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF

Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구 (A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix)

  • 이종기;최병곤;박정도;류헌수;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF

시간영역에서 가우스뉴튼법을 이용한 탄성파 파형역산 (Time Domain Seismic Waveform Inversion based on Gauss Newton method)

  • 신동훈;박창업
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.131-135
    • /
    • 2006
  • 본 논문에서는 가우스 뉴튼법을 이용한 중합전 탄성파 자료의 파형역산에 관한 연구를 수행하였다. 탄성파 파형역산에 가우스 뉴튼법을 적용하는 방법은 80년대에 제시되었으나 최근 들어서야 활발히 연구가 진행되고 있는데 이는 연산 능력과 기억용량의 한계에 기인한 것이다. 이를 극복하기 위해 본 연구에서는, 파동 전파 수치모의와 역산과정에서 각각 다른 크기의 격자간격을 사용하고, 필요한 시간영역의 파동전파 모사와 가상 진원의 근사를 통해 편미분 파형을 계산하였으며, 효과적으로 슈퍼컴퓨터를 활용하기 위해 병렬처리 기법을 사용하였다. 수치모의를 통해, 가우스 뉴튼법을 이용한 파형 역산의 수렴속도가 빠르고 정확한 것을 알 수 있었으며, 이를 통해 본 연구에서 제시한 방법의 실제 탄성파 자료를 이용한 역산에의 적용가능성을 확인하였다.

  • PDF

SOLVING A MATRIX POLYNOMIAL BY NEWTON'S METHOD

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.113-124
    • /
    • 2010
  • We consider matrix polynomial which has the form $P_1(X)=A_oX^m+A_1X^{m-1}+...+A_m=0$ where X and $A_i$ are $n{\times}n$ matrices with real elements. In this paper, we propose an iterative method for the symmetric and generalized centro-symmetric solution to the Newton step for solving the equation $P_1(X)$. Then we show that a symmetric and generalized centro-symmetric solvent of the matrix polynomial can be obtained by our Newton's method. Finally, we give some numerical experiments that confirm the theoretical results.

CONVERGENCE OF THE RELAXED NEWTON'S METHOD

  • Argyros, Ioannis Konstantinos;Gutierrez, Jose Manuel;Magrenan, Angel Alberto;Romero, Natalia
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.137-162
    • /
    • 2014
  • In this work we study the local and semilocal convergence of the relaxed Newton's method, that is Newton's method with a relaxation parameter 0 < ${\lambda}$ < 2. We give a Kantorovich-like theorem that can be applied for operators defined between two Banach spaces. In fact, we obtain the recurrent sequence that majorizes the one given by the method and we characterize its convergence by a result that involves the relaxation parameter ${\lambda}$. We use a new technique that allows us on the one hand to generalize and on the other hand to extend the applicability of the result given initially by Kantorovich for ${\lambda}=1$.

ON THE SEMI-LOCAL CONVERGENCE OF CONTRAHARMONIC-MEAN NEWTON'S METHOD (CHMN)

  • Argyros, Ioannis K.;Singh, Manoj Kumar
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1009-1023
    • /
    • 2022
  • The main objective of this work is to investigate the study of the local and semi-local convergence of the contraharmonic-mean Newton's method (CHMN) for solving nonlinear equations in a Banach space. We have performed the semi-local convergence analysis by using generalized conditions. We examine the theoretical results by comparing the CHN method with the Newton's method and other third order methods by Weerakoon et al. using some test functions. The theoretical and numerical results are also supported by the basins of attraction for a selected test function.

표적기동분석을 위한 Levenberg-Marquardt 적용에 관한 연구 (Study on Levenberg-Marquardt for Target Motion Analysis)

  • 조선일
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.148-155
    • /
    • 2015
  • Levenberg-Marquardt은 최소자승법 문제의 풀이법으로 잘 알려져 있다. 하지만 이전의 표적기동분석(TMA)의 추적필터의 경우 대부분 Gauss-Newton방법을 사용하고 있으며 Gauss-Newton은 역행열 연산이 요구되어 시스템을 불안정하게 만드는 문제점이 있다. 본 논문에서는 Gauss-Newton의 수치적 불안정성을 해결하기 위해 TMA에 Levenberg-Marquardt을 적용하여 Levenberg-Marquardt이 적용된 표적기동분석 알고리즘의 안정성을 실험으로 보인다. 이를 위해 실험에서는 Monte-Calro 시물레이션을 3개 시나리오에 대하여 수행하였으며 그 결과 Levenberg-Marquardt이 Gauss-Newton에 비하여 표적기동분석 결과인 거리, 침로, 속력의 수렴되는 시간이 빨라졌으며 행렬의 발산빈도가 저하되어 표적기동분석 결과가 안정화되었다.

Shape and location estimation using prior information obtained from the modified Newton-Raphson method

  • Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Lee, Y.J.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.570-574
    • /
    • 2003
  • In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.

  • PDF