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ON THE SEMI-LOCAL CONVERGENCE OF

CONTRAHARMONIC-MEAN NEWTON’S METHOD (CHMN)
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Abstract. The main objective of this work is to investigate the study of

the local and semi-local convergence of the contraharmonic-mean New-
ton’s method (CHMN) for solving nonlinear equations in a Banach space.

We have performed the semi-local convergence analysis by using gener-
alized conditions. We examine the theoretical results by comparing the

CHN method with the Newton’s method and other third order methods

by Weerakoon et al. using some test functions. The theoretical and nu-
merical results are also supported by the basins of attraction for a selected

test function.

1. Introduction

Let F : D ⊂ X → X be an operator, where D is an open convex subset of a
Banach space X and F is a Fréchet differentiable operator at each point of D.
We study the convergence of contraharmonic-mean method defined for x0 ∈ D
and n = 0, 1, 2, . . .,

(1)

{
yn =xn−F ′(xn)−1F (xn),
xn+1 =yn+F ′(xn)−1F ′(yn)(F ′(yn)−F ′(xn))(F ′(xn)2+F ′(yn)2)−1F (xn),

where F ′(x) is the Fréchet derivative of operator F at the point x ∈ D. We
use the method (1) to find a solution x∗ of non linear operator equation of the
form

(2) F (x) = 0.

Newton’s method is most commonly used for solving such equations. But it
is only of order two under some conditions [1–23]. It is defined as follows:

(3) xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, 2, . . . .

There are several papers on the variant or modification of Newton’s method
in a real space ([9, 10, 18, 19]), and in a Banach space ([7, 8]). Generally, we
use two types of convergence analysis for the solutions of nonlinear equation
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(2). First is the local convergence analysis in which we start with the assump-
tion of existence of the particular solution, around this solution there exists
a neighborhood and starting with any vector in this neighborhood lead to a
sequence which converges to the root under some suitable conditions. Second
is the semilocal convergence analysis. It does not require the knowledge of the
existence of a solution, rather than demands the same conditions around the
initial vector.

The semilocal convergence of Newton’s method in Banach spaces was estab-
lished by Kantorovich in [13]. The convergence of the sequence obtained by the
iterative expression is derived from the convergence of majorizing sequences.
This technique has been used by many authors in order to establish the order
of convergence of the variants of Newton’s methods (see, for example, [2, 3]).
The earlier study of the contraharmonic-mean Newton method for the solu-
tion of (2) in a real space uses the higher order dericatives while the method
involves only the first-order derivative, hence it limits the applications of the
method (1). In this paper we present the semi-local convergence using only the
first-order Fréchet derivative and generalized conditions.

The convergence order is found using the following formula:

(4) µ(COC) =
ln
(
‖(xn+1 − x∗)‖/‖(xn − x∗)‖

)
ln
(
‖(xn − x∗)‖/‖(xn−1 − x∗)‖

) ,
or

(5) µ1(ACOC) =
ln
(
‖(xn+1 − xn)‖/‖(xn − xn−1)‖

)
ln
(
‖(xn − xn−1)‖/‖(xn−1 − xn−2)‖

) .
These do not require the F ′′′ or x∗ (in (5)).

Numerical results consist of the comparative study of the proposed method
along with the Newton’s method and the method of Weerakoon et al. (see
[22]) by using the some test functions for nonlinear equations and system of
equations. One important aspect is the discussion of the extraneous fixed
points and the comparative study of the dynamics of the CHN method with
the Newton’s method and the method of Weerakoon et al. [22] for the solution
of non linear equation.

2. Local convergence analysis

Theorem 1. Let I be a convex subset of <i and F : I → <i be a function such
that

(a) F has a simple root x∗ ∈ I,
(b) Jacobian matrix F ′(x∗) is non singular at the root x∗ and,
(c) F is a third order Fréchet differential in the convex set I at some neigh-

bourhood S of the root x∗. Then, the iterative method (1) has convergence of
third order to the root x∗.
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Proof. Let x∗ ∈ I be a simple zero of a function F , en = xn − x∗ and
Ak =

(
1
k!

)
F ′(x∗)−1F (k)(x∗). Using Taylor expansion and taking into account

F (x∗) = 0, we get

(6) F (xn) = F ′(x∗)
[
en +A2e

2
n +A3e

3
n +O(e4n)

]
,

(7) F ′(xn) = F ′(x∗)
[
1 + 2A2en + 3A3e

2
n + 4A4e

3
n +O(e4n)

]
.

Then, from (6) and (7), we get

F ′(xn)−1F (xn) = en −A2e
2
n +

(
2A2

2 − 2A3

)
e3n +O(e4n).

Since yn = xn − F ′(xn)−1F (xn), we obtain

(8) yn = x∗ +A2e
2
n +

(
2A3 − 2A2

2

)
e3n + (4A3

2 − 7A2A3 + 3A4)e4n +O(e5n).

Hence, we have

(9) F (yn) = F ′(x∗)[A2e
2
n−2(A2

2−A3)e3n +(5A3
2−7A2A3 +3A4)e4n +O(en)5],

(10) F ′(yn) = F ′(x∗)[1 + 2C2
2e

2
n + 4C2(C3 − C2

2 )e3n +O(e4n)].

We have again

(11) F ′(xn)2 = F ′(x∗)2[1+4C2en+(4C2
2+6C3)e2n+(8C4+12C2C3)e3n+O(e4n)],

(12) F ′(y(n))
2 = F ′(x∗)2[1 + 4C2

2e
2
n + (8C2C3 − 8C3

2 )e3n +O(e4n)].

Therefore by the CHN method, we have

(13) en+1 = (2C2
2 +

C3

2
)e3n +O(e4n).

Equation (13) confirms that the CHN method (1) converges with third-order to
the root of F locally, if there exists a third-order Fréchet differentiable operator
in an open convex domain I. �

3. Semi-local convergence analysis

We need the following Ostrowski-type results connecting the iterates of
method (1).

Lemma 1. Suppose that the iterates of method (1) are well defined for all
n = 0, 1, 2 . . . . and some x0 ∈ D. Then, the following estimates hold

yn+1 − xn+1 = − F ′(xn+1)−1
[ ∫ 1

0

(F ′(xn + θ(xn+1 − xn))

− F ′(xn))(xn+1 − xn)dθ − F ′(xn)(yn − xn+1)
]

(14)

and

xn+1 − yn = F ′(xn)
−1
F ′(yn)(F ′(yn)− F ′(xn))(F ′(xn)2

+ F ′(yn)2)−1F ′(x0)2F ′(x0)−1F ′(x0)−1F (xn+1).(15)
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Proof. By the first substep of method (1) we can write

F (xn+1) = F ′(xn+1)− F (xn)− F ′(xn)(yn − xn).

Hence, we further get

yn+1 − xn+1

= − F ′(xn+1)−1
[
F (xn+1)− F (xn)− F ′(xn)(yn − xn)

]
= F ′(xn+1)−1

[ ∫ 1

0

(F ′(xn + θ(xn+1 − xn))dθ − F ′(xn))(xn+1 − xn)

+ F ′(xn)(xn+1 − yn)
]
,(16)

which shows estimate (14). Then, estimates (15) follows immediately from the
second substep of the method (1). �

Scalar parameters and functions are needed for the semilocal convergence
analysis that follows: Let w0 : [0,∞)→ [0,∞) be a nondecreasing and contin-
uous function.

Suppose that equation

(17) w0(t)− 1 = 0

has a minimal positive solution δ0. Let a > 0 and w : [0, δ0) → [0,∞), v :
[0, δ0) → [0,∞) and v0 : [0, δ0) → [0,∞) be continuous and non decreasing
functions.

Suppose that equation

(18) v0(t)− 1 = 0

has a minimal positive solution δ1.
Set δ2 = min{δ0, δ1}, s0 > 0,

t1 = s0 +
av0(s0)w(s0)b0

2(1− w0(0))(2− 1
2 (v0 + v0(s0)))

,

r1(t) =

∫ 1

0
w(θt1)dθ + v0(t)

1− w0(t)
,

r2(t) =
av0(t)w(t)

∫ 1

0
w(θt1)dθ + v0(t)

2(1− w0(t))(1− v0(t))
,

r(t) = max{r1(t), r2(t)}, t ∈ [0, δ2),

b0 =

∫ 1

0

w(θt1)dθt1 + v0(0)(t1 − s0).

Suppose that equation

δ0 +
2r(t)t1
1− r(t)

− t = 0
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has a minimal solution δ ∈ (0, δ2) satisfying w0(δ) < 1 and v(δ) < 1. Moreover
consider the iterations defined for all n = 0, 1, 2, . . . by

(19) tn+1 = sn +
av0(sn)w(sn − tn)bn

2(1− w0(tn))(1− 1
2 (v(tn) + v(sn)))

,

sn+1 = tn+1 +

∫ 1

0
w(θ(tn+1 − tn))dθ(tn+1 − tn) + v0(tn)(tn+1 − sn)

1− w0(tn+1)
,

where

bn =

∫ 1

0

w(θ(tn+1 − tn))dθ(tn+1 − tn) + v0(tn)(tn+1 − sn).

Then, we have the following results on mazorizing sequences for method (1).

Lemma 2. Under the prestated hypotheses, the sequences {tn} and {sn} are
nondecreasing bounded from above by δ and converge to the common least upper
bound t∗ satisfying t1 ≤ t∗ ≤ δ.

Proof. By the definitions of scalar sequences we have

0 ≤ sn ≤ tn+1 ≤ tn+1 ≤ tn+1 ≤ δ,
0 ≤ sn+1 − tn+1 ≤ r(tn+1 − tn) ≤ rn+1(t1 − t0), r = r(δ)

and
0 ≤ tn+1 − sn ≤ r(tn+1 − tn) ≤ rn+1(t1 − t0).

These estimates lead to

sn+1 ≤ tn+1 + rn+1t1 ≤ sn + 2rn+1t1

≤ sn−1 + 2rn+1t1 ≤ s0 + 2rt1 + · · ·+ 2rnt1 + 2rn+1t1

= s0 + 2rt1(1 + r + · · ·+ rn)

= s0 + 2rt1
1− rn+1

1− r
t1

< δ.(20)

Hence, the sequences {tn} and {sn} are non decreasing bounded from above
by δ and as such they converge to their unique least upper bound t∗. �

The following hypotheses (A) are utilized in the semilocal convergence anal-
ysis of method (1).

(A1) F : D → Y is continuously Fréchet-differentiable and there exists
x0 ∈ D such that F ′(x0)−1 ∈ L(Y,X) and ‖F ′(x0)−1F (x0)‖ ≤ s0.

(A2) There exists a continuous and nondecreasing function w0 : [0,∞) →
[0,∞) such that ‖F ′(x0)−1(F ′(x)− F ′(x0))‖ ≤ w0(‖(x− x0)‖) ∀x ∈ D.

(A3) There exist a > 0 and continuous and nondecreasing functions w :
[0, δ0) → [0,∞), v : [0, δ0) → [0,∞), v0 : [0, δ0) → [0,∞) such that for all
x, y ∈ B(x0, s0)

‖F ′(x0)−1‖ < a,



1014 I. K. ARGYROS AND M. K. SINGH

‖F ′(y)− F ′(x)‖ ≤ w‖(y − x)‖,
‖F ′(x∗)−2(F ′(x)2 − F ′(x∗)2)‖ ≤ v(‖x− x∗‖),

‖F ′(x0)−1F ′(x)‖ ≤ v0(‖x− x0)‖.
(A4) Hypothesis of Lemma 2 hold.
(A5) B̄(x0, t∗) ⊂ D, where t∗ = limn→∞ tn.

(A6) There exists t∗∗ ≥ t∗ such that
∫ 1

0
w0(θt∗∗)dθ < 1.

Set B1 = D ∩ B̄(x0, t∗∗).
Then, using the proceeding notations and hypothesis (A), we show the main

semilocal convergence analysis result for the method (1).

Theorem 2. Under the hypothesis (A), the sequences {xn} and {yn} gener-
ated by the method CHN are well defined in U(x0, t∗) remain in U(x0, t∗) and
converge to a solution x∗ of equation F (x) = 0, so that

‖yn − xn‖ ≤ sn − tn,
‖xn+1 − yn‖ ≤ tn+1 − sn,
‖xn − x∗‖ ≤ t∗ − tn, and

‖yn − x∗‖ ≤ t∗ − sn.
Proof. The preceding estimates follow immediately by mathematical induction
the triangle inequality, Lemma 1, Lemma 2, and consequences of the Banach
lemma on invertible operators [13] for x0 ∈ B(x0, t∗)

‖F ′(x0)−1(F ′(x)− F ′(x0))‖ ≤ w0‖(x− x0)‖ ≤W0(t∗) < 1,

so

‖F ′(x0)−1F ′(x)‖ ≤ 1

(1− w0)‖(x− x0)‖
,

‖(2F ′(x0)2)−1(F ′(x)2 + F ′(y)2 − 2F ′(x0)2)‖

≤ 1

2
[‖(F ′(x0)2)−1(F ′(x)2 − F ′(x0)2)‖+ ‖(F ′(x0)2)−1(F ′(y)2 − F ′(x0)2)‖]

≤ 1

2

(
v(‖x− x0‖) + v(‖y − x0‖)

)
≤ 1

2

(
v(t∗) + v(t∗)

)
= v(t∗)

< 1,

so

‖(F ′(x)2 + F ′(y)2)−1F ′(x0)2‖ ≤ 1

2(1− 1
2v(‖x− x0‖) + v(‖y − x0‖))

.

These estimates lead to

‖yn+1 − xn+1‖ ≤
b̄n

1− w0(‖xn+1 − x0‖)
≤ sn+1 − tn+1,
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where

b̄n =

∫ 1

0

w(θ‖xn+1 − xn‖)dθ‖xn+1 − xn‖+ v0(‖xn − x0‖)‖yn − xn+1‖

≤ bn =

∫ 1

0

w(θ(tn+1 − tn))dθ(tn+1 − tn) + v0(tn)(tn+1 − sn)(21)

and

‖xn+1 − yn‖
= F ′(xn)−1F ′(yn)(F ′(yn)− F ′(xn))(F ′(xn)2 + F ′(yn)2)−1

F ′(x0)2F ′(x0)−1F ′(x0)−1F (xn)

≤ av0(‖yn − x0‖)w(‖yn − xn‖)b̄n
2(1− w0(‖xn − x0‖))(1− 1

2 (v(‖xn − x0‖)) + v(‖yn − x0‖))

≤ av0(sn)w(sn − tn)b̄n

2(1− w0tn)(1− 1
2 (v(tn) + v(sn)))

= tn+1 − sn.

Hence, the sequences {xn} and {yn} are fundamental in a Banach space X,
and as such they converge to some x∗ ∈ B̄(x0, t∗), since B̄(X0, t∗) is closed.
By letting n→∞ in the first estimate of Lemma 1 and using continuity of F
we obtain F (x∗) = 0.

Finally to show the uniqueness part let Q =
∫ 1

0
F ′(x∗ + θ(x∗∗ − x∗))dθ for

some x∗∗ ∈ B1 with F (x∗∗) = 0. Using (A2), (A5), and definition of B1, we
have in turn

‖F ′(x0)−1(Q− F ′(x0))‖ ≤
∫ 1

0

w0(θ‖(x∗ − x0)‖) + (1− θ‖(x∗∗ − x0)‖)dθ

≤
∫ 1

0

w0(θt∗ + (1− θ)t∗∗)dθ

< 1.(22)

So Q−1 exists. But then, we can write

0 = F ′(x∗∗)− F ′(x∗) = Q(x∗∗ − x∗),
leading to x∗∗ = x∗ by the invertibility of Q. �

4. Numerical results

In this section, we study the efficiency of iterative method (1), We have done
the comparative study of the CHN method along with the classical Newton’s
method (3), and third order Weerakoon et al. method [22] whose iterative
expression is given by

(23)

{
yn = xn − F ′(xn)−1F (xn),
xn+1 = xn − (F ′(xn) + F ′(yn))−12F (xn), n = 0, 1, 2, . . . .



1016 I. K. ARGYROS AND M. K. SINGH

Table 1. Comparison of the different methods for Example 1

Method N x f(x)

1 1.00000000 1.71828182845905
2 0.36787944117144 0.44466786100977Newton Method
3 0.06008006872679 0.06192156984951

Cpu 0.01560 Sec 4 0.00176919944264 0.00177076539934
5 1.564110789898428e-006 1.564112013019425e-006
6 1.223321565989411e-012 1.223243728531998e-012
7 7.783745890945912e-017 0.00000000

1 1.00000000 1.71828182845905
2 0.17448830438386 0.19063681707241Weerakoon Method
3 0.00158415756260 0.00158541300305

Cpu 0.01760 Sec 4 1.323865209948080e-009 1.323865239655220e-009
5 −2.883082976183813e-017 0.00000000

1 1.00000000 1.71828182845905CHMN Method
2 0.24514254757422 0.27780344800498

Cpu 0.01680 Sec 3 0.00698738950784 0.00701185827164
4 1.979112795331278e-007 1.979112991268295e-007
5 −9.258546569522333e-018 0.00000000

Example 1. Let X = R, D = (−1, 1) and F : D → R be a function defined
by

F (x) = ex − 1, ∀x ∈ D.
Then, F is Fréchet differentiable and its Fréchet derivative F ′(x) at any point
x ∈ D is given by

F ′(x) = ex.

We have computed the numerical results with the help of MATLAB 2007 and
the stopping criterion used for the computation is |xn+1 − x∗| + |f(xn+1)| <
10−14.

The initial approximation is 1.0 and approximate solution is 0. The numeri-
cal solution of Example 1 by 2nd order Newton’s method (2), 3rd order method
of Weerakoon et al. [22] and 3rd order CHMN method (1) is given in Table
1. Numerical results in Table 1 reveals that starting with the point 1.0, the
CHMN method is well competing to the other method in converging to root 0.

Example 2. Let D = X = Y = R2. Consider an operator F : R2 → R2

defined by

F (x) =
(
− x2 + 1/3,−y2 + 1/3

)
, ∀x = (x, y) ∈ R2.

The starting vector is [0.5, 0.5] and approximate solution is [0.57735, 0.57735].
The numerical solution of Example 2 by 2nd order Newton’s method (2), 3rd

order method of Weerakoon et al. [22] and CHMN method (1) is given in Table
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Table 2. Comparison of the different methods for Example 2

Method N x y f(x, y) g(x, y)

1 0.500000 0.500000 0.0833333 0.0833333
2 0.583333 0.583333 −0.00694444 −0.00694444Newton Method
3 0.577381 0.577381 −0.0000354308 −0.0000354308

Cpu 0.1560 Sec 4 0.57735 0.57735 −9.41408× 10−10 −9.41408× 10−10

5 0.57735 0.57735 0.000000 0.000000

1 0.500000 0.500000 0.0833333 0.0833333
2 0.576923 0.576923 0.000493097 0.000493097Weerakoon Method
3 0.57735 0.57735 6.75901× 10−11 6.75901× 10−11

Cpu 0.2360 Sec 4 0.57735 0.57735 0.000000 0.000000

1 0.500000 0.500000 0.0833333 0.0833333
2 0.576471 0.576471 0.00101499 0.00101499CHMN Method
3 0.57735 0.57735 1.18221× 10−9 1.18221× 10−9

Cpu 0.2160 Sec 4 0.57735 0.57735 0.000000 0.000000

2. Numerical results show that the CHMN method is converging to root in a
very well manner.

5. Corresponding conjugacy maps for quadratic polynomials

In this section, we will discuss the rational map R(z) arising from various
methods applied to a generic polynomial with simple roots.

Theorem 3 (Newton’s method). For a rational map R(z) arising from New-
ton’s method applied to P (z) = (z − a)(z − b), a 6= b, R(z) is conjugate via the
Mobius transformation given by M(z) = (z − a)/(z − b) to

S(z) = MoRoM−1(z) = M
(
R
(zb− a
z − 1

))
,

S(z) = z2.

Theorem 4 (Weerakoon et al. method [22]). For a rational map R(z) arising
from Weerakoon et al. method [22] equation (23) applied to P (z) = (z−a)(z−b),
a 6= b, R(z) is conjugate via the Mobius transformation given by M(z) =
(z − a)/(z − b) to

S(z) = z3M(z),

where, M(z) = 1.

Theorem 5 (Proposed method CHMN). For a rational map R(z) arising from
proposed method CHMN (1) applied to P (z) = (z − a)(z − b), a 6= b, R(z) is
conjugate via the Mobius transformation given by M(z) = (z − a)/(z − b) to

S(z) = z3M(z),

where, M(z) = (2 + z + z2)/(1 + z + 2z2).
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Theorem 6 (Newton like method). For a rational map R(z) arising from
Newton like method applied to P (z) = (z − a)(z − b), a 6= b, R(z) is conjugate
via the Mobius transformation given by M(z) = (z − a)/(z − b) to

S(z) = zpM(z),

where, M(z) is either unity or a rational function and p is the order of the
Newton like method

6. Extraneous fixed points

The Newton like iterative methods discussed in earlier sections can be writ-
ten in the fixed-point iteration form as

(24) xn+1 = xn − Ef (xn)
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

Clearly, the root x∗ of f(x) = 0 is a fixed point of the method. However, the
points ξ 6= x∗ at which Ef (ξ) = 0 are also fixed points of the method as, with
Ef (ξ) = 0, second term on right side of (24) vanishes. These points are called
extraneous fixed points (see [20]). In this section, we will discuss the extraneous
fixed points of some Newton like method for the polynomial z3 − 1.

Theorem 7. There are no extraneous fixed points for Newton’s method xn+1 =

xn − f(xn)
f ′(xn)

, n = 0, 1, 2, . . ..

Proof. For Newton’s method, we have Ef (xn) = 1. Hence, it has no extraneous
fixed point. �

Theorem 8. There are no extraneous fixed points for method of Weerakoon et
al. [22] given by equation (23).

Proof. For method of (23), Ef (xn) given by the following equation:

(18z6)/(1 + 4z3 + 13z6).

In this equation numerator is of degree 6 but it has no extraneous fixed points.
�

Theorem 9. There are 6 extraneous fixed points for the proposed method
CHMN (1).

Proof. For the proposed method CHMN (1) we have Ef (xn) given by the fol-
lowing equation.

(9z6(1 + 4z3 + 13z6))/(1 + 8z3 + 24z6 + 32z9 + 97z12).

In this equation numerator is of degree 12. The proposed method CHMN (1)
has 6 extraneous fixed points.

z = − 0.6174606388170148013751771894392

− 0.2098397717180281318560053906816i,

z = − 0.6174606388170148013751771894392
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+ 0.2098397717180281318560053906816i,

z = 0.1270037463763676588679558109348

− 0.6396564849115167404893886044665i,

z = 0.1270037463763676588679558109348

+ 0.6396564849115167404893886044665i,

z = 0.4904568924406471425072213785045

− 0.4298167131934886086333832137849i,

z = 0.4904568924406471425072213785045

+ 0.4298167131934886086333832137849i.

These fixed points are repelling (the derivative at these points has its mag-
nitude > 1). �

Remark. Similarly we may calculate the extraneous fixed points for other New-
ton like method. These fixed points are repelling (the derivative at these points
has its magnitude > 1). These fixed points can be seen in the basin of attrac-
tions plot for Example 3 (z3−1), Figure 2 (see dynamics of methods Subsection
7.2).

7. Dynamics of methods

We have studied dynamics and fractal patterns of the function f(x) =
(ex − 1) by using different iterative methods. The dynamics of the function
by iterative methods usually help us to study the convergence and stability of
the methods. The basic definitions and dynamical concepts of function can be
found in [1, 7].

7.1. For Example 1

We have taken a square R×R = [−5.0, 5.0]× [−5.0, 5.0] of 500× 500 points
to study the dynamics of function f(x) = (ex− 1). If with every starting point
z(0) in the above squares our numerical iterative methods generate a sequence

that converges to a zero z∗ of the function with a tolerance- f(zn) < 5× 10−2

and a maximum of 21 iterations, then we say that z(0) will lie in the basin of
attraction of this zero, and we assign a fixed color to this point z(0). we have
described the basins of attraction for Newton’s method, method of Weerakoon
et al. [22] and CHMN method for finding complex roots of above mentioned
functions (Figure 1).

(i) The basin of attraction for all the iterative methods contains fractal
Julia set and basin of all the methods look almost similar.

(ii) The Julia set with the red colour show the failure of the method. The
Newton’s method contains the largest area of Julia set with red color
while the CHMN method have smallest red color area.
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(a) Newton’s 2nd order method
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(c) CHN 3rd order method

Figure 1. Basin of attraction for ex − 1 by different methods

(iii) Again the fatou set with blue color shows the basins of the methods.
The blue color area shows that CHMN method contains the largest
fatou set.

7.2. For Example 3

We have also considered Example 3 for the illustrations of the dynamics of
the iterative methods under the same previous conditions. We have plotted the
fractal patterns graph of Example 3 (F (z) = z3 − 1 ) for the different iterative
methods with a fixed different color to each root of the basins of attraction.

We can see the extraneous fixed points for Newton like methods in the basins
of attraction for Example 3 (z3 − 1) Figure 2. These fixed points are repelling
(the derivative at these points has its magnitude > 1). Clearly, there is no
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(a) Newton’s 2nd order method
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(c) Proposed CHMN 3rd order method

Figure 2. Basin of attraction for f2 = z3 − 1 by different methods

extraneous fixed points for Newton method and Weerakoon et al. 3rd order
method [22]. The proposed method CHMN has 6 extraneous fixed points.

8. Conclusion

We discussed a third- order Newton-like method for solving nonlinear equa-
tions in Banach space. We performed the two convergence analyses for the
method CHMN. Local convergence analysis demands the third- order differ-
entiability but the semilocal convergence analysis needs only the first-order
Fréchet derivative. We have studied about the extraneous fixed points and
they are repulsive. Theoretical results are checked by the numerical examples
and numerical results are examined with the basin of attractions for a selected
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example. All the results (Theoretical, numerical, dynamical) are fruitful for
the further study of Newton like methods.
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