CONVERGENCE OF THE RELAXED NEWTON'S METHOD |
Argyros, Ioannis Konstantinos
(Department of Mathematics Sciences Cameron University)
Gutierrez, Jose Manuel (Department of Mathematics and Computation University of La Rioja) Magrenan, Angel Alberto (Department of Mathematics and Computation University of La Rioja) Romero, Natalia (Department of Mathematics and Computation University of La Rioja) |
1 | J. Appell, E. de Pascale, J. V. Lysenko, and P. P. Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997), no. 1-2, 1-17. |
2 | I. K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Frechet derivative, Comput. Math. Appl. 37 (1999), no. 7, 109-115. DOI ScienceOn |
3 | I. K. Argyros, A semilocal convergence analysis for directional Newton methods, Math. Comput. 80 (2011), no. 273, 327-343. |
4 | I. K. Argyros and S. Hilout, On the convergence of inexact Newton-type methods using recurrent functions, Panamer. Math. J. 19 (2009), no. 1, 79-96. |
5 | I. K. Argyros and S. Hilout, Inexact Newton methods and recurrent functions, App. Math. 37 (2010), no. 1, 113-126. |
6 | I. K. Argyros and S. Hilout, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387. DOI ScienceOn |
7 | I. K. Argyros and S. Hilout, Estimating upper bounds on the limit pointss of majorizing sequences for Newton's method, Numer. Algor. 62 (2013), no. 1, 115-132. DOI |
8 | I. K. Argyros and S. Hilout, On the semilocal convergence of damped Newton's method, Appl. Math. Comput. 219 (2012), no. 5, 2808-2824. DOI ScienceOn |
9 | I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Method for Equations and Its Applications, CRC Press/Taylor and Francis, New York, 2012. |
10 | Z.-Z. Bai and J.-L. Dong, A modified damped Newton method for linear complementarity problems, Numer. Algorithms 42 (2006), no. 3-4, 207-228. DOI |
11 | X. J. Chen and L. Q. Li, A parameterized Newton method and a quasi-Newton method for nonsmooth equations, Comput. Optim. Appl. 3 (1994), no. 2, 157-179. DOI |
12 | R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982), no. 2, 400-408. DOI ScienceOn |
13 | R. Fontecilla, T. Steihaug, and R. A. Tapia, A convergence theory for a class of quasi-Newton method for constrained optimization, SIAM J. Numer. Anal. 24 (1987), no. 5, 1133-1151. DOI ScienceOn |
14 | B. I. Epureanu and H. S. Greenside, Fractal basins of attraction associated with a damped Newton's method, SIAM Rev. 40 (1998), no. 1, 102-109. DOI ScienceOn |
15 | X. Guo, On semilocal convergence of inexact Newton method, J. Comput. Math. 25 (2007), no. 2, 231-242. |
16 | L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. |
17 | F. V. Haeseler and H. Kriete, Surgery for relaxed Newton's method, Complex Variables Theory Appl. 22 (1993), no. 1-2, 129-143. DOI |
18 | B. T. Polyak, Newton-Kantorovich method and its global convergence, J. Math. Sci. (N. Y.) 133 (2006), no. 4, 1513-1523. DOI ScienceOn |
19 | A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, 1966. |
20 | J. M. Ortega andW. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. |
21 | A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, Nueva York, 1973. |
22 | L. B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger Publishing Company, Inc., California, 1979. |
23 | W. Shen and C. Li, Kantorovich-type convergence criterion for inexact Newton method, Appl. Numer. Math. 59 (2009), no. 7, 1599-1611. DOI ScienceOn |
24 | T. Steihaug, Quasi-Newton methods for large scale nonlinear problems, Ph.D Thesis, Res. Rep. 49, School of Organization and Management, Yale University, New Hacen, CT, 1980. |
25 | J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, New Jersey, 1964. |
26 | S. Weerakon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. |
27 | T. Yamamoto, Historical developments in convergence analysis for Newton's and Newton-like methods, J. Comput. Appl. Math. 124 (2000), no. 1-2, 1-23. DOI ScienceOn |
28 | T. J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev. 37 (1995), no. 4, 531-551. DOI ScienceOn |
29 | T. J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), no. 3, 583-590. DOI ScienceOn |