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NEWTON-RAPHSON METHOD FOR COMPUTING

p-ADIC ROOTS

Gwangoo Yeo*, Seong-Jin Park**, and Young-Hee Kim***

Abstract. The Newton-Raphson method is used to compute the
q-th roots of a p-adic number for a prime number q. The sufficient
conditions for the convergence of this method are obtained. The
speed of its convergence and the number of iterations to obtain a
number of corrected digits in the approximation are calculated.

1. Introduction

Let p be a prime and Qp be the field of p-adic numbers. The theories
of p-adic numbers have been applied in several areas not only in mathe-
matics but also in scientific areas ([9]). Many efforts have been made to
find solutions of p-adic equations, but it was difficult to find it out right
away, so people started to research ways to compute the approximate
solutions using numerical methods ([8]). To start with, there has been
a research on how to find square roots of p-adic numbers ([10]). Also,
a variety of ways to find roots has been researched, such as Newton’s
method or other methods in numerical analysis like secant method. The
researches continued on finding the cubic root of p-adic numbers. These
were done using the same technique that was used in finding square roots
of p-adic numbers ([2], [3], [5]). The latest research was on computing
fifth roots of p-adic numbers ([7]).

In this paper, we use the Newton-Raphson method for computing
p-adic roots and generalize previous results in [5] to the case of the q-th
roots of a p-adic number in Qp for any prime number q. Consequently,
we have the sufficient conditions for the convergence of Newton-Raphson
method for computing the q-th roots of a p-adic number. We calculate
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the speed of its convergence and the number of iterations to obtain a
number of corrected digits in the approximation.

2. Preliminaries

Let p be a prime number and x ∈ Q (x 6= 0). The p-adic order of x,
ordpx, is defined by

ordpx =

{
the highest power of p which divides x, if x ∈ Z,
ordpa− ordpb, if x = a

b , a, b ∈ Z, b 6= 0.

Consider a map | · |p : Q→ R+ defined by

|x|p =

{
p−ordpx, if x 6= 0,

0, if x = 0.

The field Qp of p-adic numbers is the completion of the field Q of rational
numbers with respect to the p-adic norm | · |p ([4]).

A p-adic number a ∈ Qp is said to be a p-adic integer if this canonical
expansion contains only nonnegative powers of p. The set of p-adic
integers is denoted by Zp, and we have

Zp = {
∞∑
k=0

βkp
k : 0 ≤ βk ≤ p− 1} = {a ∈ Qp : ordpa ≥ 0}.

A p-adic integer a ∈ Zp is said to be a p-adic unit if the first digit β0
in the p-adic expansion is different from zero. The set of p-adic units is
denoted by Z∗p ([4]).

A p-adic number b ∈ Qp is said to be a q-th root of a ∈ Qp of order

k if bq ≡ a (mod pk) for k ∈ N ([9]).
To discuss the q-th roots of p-adic numbers, the following lemma and

proposition are needed ([4], [9]).

Lemma 2.1. Let a, b ∈ Qp. Then a and b are congruent modulo pk

and write a ≡ b (mod pk) if and only if |a− b|p ≤ 1/pk.

Proposition 2.2. Let x be a p-adic number of norm p−n. Then x
can be written as the product x = pnu, where u ∈ Z∗p.

The next theorem is the basic for the existing results on p-adic roots
in Zp ([4]).

Theorem 2.3. (Hensel’s Lemma) Let F (x) = c0 + c1x+ c2x
2 + · · ·+

cnx
n be a polynomial whose coefficients are p-dic integers. Let

F ′(x) = c1 + 2c2x+ · · ·+ ncnx
n−1
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be the derivative of F (x). Suppose ā0 is a p-adic integer which satisfies
F (ā0) ≡ 0 (mod p) and F ′(ā0) 6≡ 0 (mod p). Then there exists a unique
p-adic integer a such that F (a) = 0 and a ≡ ā0(mod p).

The following result is obtained from Hensel’s Lemma ([4]).

Theorem 2.4. A polynomial with integer coefficients has a root in
Zp if and only if it has an integer root of modulo pk for any k > 1.

The following theorem provides the conditions for the existence of
the q-th roots of p-adic numbers ([6]).

Theorem 2.5. A rational integer a is not divisible by p has a q-th
root in Zp(p 6= q) if and only if a is a q-th root residue modulo p.

From this, we have the following result by the similar ways in [6].

Theorem 2.6. Let p be a prime number.

(1) If p 6= q, then a = pordpau ∈ Qp for some u ∈ Z∗p has a q-th root in
Qp if and only if ordpa = qm for m ∈ Z and u = vq for some unit
v ∈ Z∗p.

(2) If p = q, then a = qordqau ∈ Qq for some u ∈ Z∗q has a q-th root

in Qq if and only if ordpa = qm for m ∈ Z and u ≡ 1 (mod q2) or
u ≡ k (mod q) for some k (2 ≤ k ≤ q − 1).

3. Main results

To compute a q-th root of a p-adic number a is to find a solution
of xq = a. There are many numerical methods to find roots of p-adic
numbers, but we use the Newton-Raphson method because of the speed
of convergence of the approximate solutions ([1], [3]).

Let a ∈ Qp (a 6= 0) be a p-adic number such that |a|p = p−qm (m ∈ Z)
and let {xn} be a sequence of p-adic numbers derived by the Newton-
Raphson method. We know that if there is a p-adic number β that
satisfies βq = a, then |xn|p = |β|p = p−m.

The iterative formula for the Newton-Raphson method to find the
solution of the equation f(x) = 0 is that for n ∈ N ∪ {0}

xn+1 = xn −
f(xn)

f ′(xn)
. (3.1)

Let f(x) = xq − a. Then the iteration (3.1) becomes the recurrence
relation

xn+1 =
(q − 1)xqn + a

qxq−1n

, n = 0, 1, 2, . . . . (3.2)
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We have from the binomial theorem that

f(xn+1) = xqn+1 − a

=
1

qqx
(q−1)q
n

{qC0(q − 1)qxq
2

n + [qC1(q − 1)q−1 − qq]xq(q−1)n a

+ qC2(q − 1)q−2xq(q−2)n a2 + qC3(q − 1)q−3xq(q−3)n a3 + · · ·
+ qC(q−1)(q − 1)xqna

q−1 + qCqa
q},

(3.3)

where qCr = q!
(q−r)!r! for 0 ≤ r ≤ q.

Let P (xqn) be

P (xqn) = qC0(q − 1)qxq
2

n + [qC1(q − 1)q−1 − qq]xq(q−1)n a

+ qC2(q − 1)q−2xq(q−2)n a2 + qC3(q − 1)q−3xq(q−3)n a3

+ · · ·+ qC(q−1)(q − 1)xqna
q−1 + qCqa

q

(3.4)

in (3.3). By substituting a for xqn in (3.4), we have

P (a) = aq{qC0(q − 1)q + qC1(q − 1)(q−1) + · · ·+ qCq−1(q − 1) + qCq − qq}

= aq
2

{(q − 1 + 1)q − qq} = 0.

Therefore P (xqn) can be factored by (xqn − a). And so we can write

P (xqn) = (xqn − a)G(xqn), (3.5)

where

G(xqn) = (q − 1)qxq(q−1)
n +

{
qC0(q − 1)q + qC1(q − 1)q−1 − qq

}
xq(q−2)
n a

+
{
qC0(q − 1)q + qC1(q − 1)q−1 + qC2(q − 1)q−2 − qq

}
xq(q−2)
n a2 + · · ·

+
{
qC0(q − 1)q + qC1(q − 1)q−1 + qC2(q − 1)q−2 + · · ·+ qCq−1(q − 1)− qq

}
.

(3.6)

Substituting xqn by a in (3.6), we have

G(a)

= qC0q(q − 1)q + qC1(q − 1)(q − 1)q−1 + qC2(q − 2)(q − 1)q−2

+ · · ·+ 2qCq−2(q − 1)2 + qCq−1(q − 1)− qq(q − 1)

= −qq(q − 1) +

q∑
n=0

q!

(q − n)!n!
(q − n)(q − 1)q−n

= −qq(q − 1) +

q∑
n=0

q(q − 1){q−1Cn(q − 1)q−1−n · 1n}

= qq(q − 1)− qq(q − 1) = 0.

(3.7)
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Therefore G(xqn) can be factored by (xqn − a). By (3.5) and (3.7), we
have

P (xqn) =(xqn − a)2(z1x
q(q−2)
n + z2x

q(q−3)
n a+ z3x

q(q−4)
n a2 + · · ·

+ zq−3x
q
na

q−3 + aq−2),
(3.8)

where zk is a natural number for 1 ≤ k ≤ q − 2. Also we have

xn+1 − xn =
1

qxq−1n

(a− xqn). (3.9)

Therefore we have the following result.

Theorem 3.1. Let x0 be a q-th root of a of order r.
(1) If p 6= q, then xn is a q-th root of a of order 2nr − qm(2n − 1).
(2) If p = q, then xn is a q-th root of a of order 2nr− q(m+ 1)(2n − 1).

Proof. Let {xn} be the sequence defined by (3.2) and x0 be the q-th
root of a of order r. Then, by the assumption and Lemma 2.1,

xq0 − a ≡ 0 (mod pr)⇒ |xq0 − a|p ≤ p
−r. (3.10)

We have from (3.8) that

|P (xqn)|p ≤ p−2rmax{|z1xq(q−2)n |p, |z2xq(q−3)n a|p, |z3xq(q−4)n a2|p,
. . . , |zq−3xqnaq−3|p, |aq−2|p},

(3.11)

where zk ∈ N with 1 ≤ k ≤ q − 2. The sum of exponents of xqn and

a at each element of zkx
q(q−k−1)
n ak−1 is a constant q − 2. If there is

a j number of factor of q in zk’s, the p-norm of the element is equal
to p−q(q−2)−j , which is smaller than |aq−2|p. Since |xqn|p = p−qm and
|a|p = p−qm, it follows from (3.3), (3.10) and (3.11) that

|xq1 − a|p ≤
∣∣∣∣ 1

qqx
(q−1)q
0

∣∣∣∣
p

· p−2r · p−q(q−2). (3.12)

By (3.12), we have{
|xq1 − a|p ≤ p qm−2r, (p 6= q),

|xq1 − a|p ≤ p q(m+1)−2r, (p = q).
(3.13)

We also have from Lemma 2.1 that{
xq1 − a ≡ 0 (mod p2r−qm), (p 6= q),

xq1 − a ≡ 0 (mod p2r−q(m+1)), (p = q).

In this manner, we have that if p 6= q, then

xqn − a ≡ 0 (mod pφn). (3.14)
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Here φn is expressed as

φ0 = r, φn+1 = 2φn − qm,

which is equivalent to

φn = 2nr − qm(2n − 1). (3.15)

When p = q, we have

xqn − a ≡ 0 (mod pφ
′
n). (3.16)

Similarly, φ′n can be expressed as

φ′n = 2nr − q(m+ 1)(2n − 1). (3.17)

(3.14) and (3.16) are proved by the mathematical induction. Then the
proof is completed.

Let {en} be the sequence defined by en = xn+1 − xn at each step of
the iteration {xn} for n ∈ N ∪ {0}. Then we have the following result.

Theorem 3.2. Let x0 be a q-th root of a of order r. Then the
sequence {en} equals to{

en ≡ 0 (mod pψn), if p 6= q,

en ≡ 0 (mod qψ
′
n), if p = q,

(3.18)

where {
ψn = 2nr −m(q · 2n − 1),
ψ′n = 2nr − (m+ 1)(q · 2n − 1) + q − 2.

(3.19)

Proof. We have from (3.9) that for all n ∈ N

|xn+1 − xn|p =

∣∣∣∣ 1

qxq−1n

∣∣∣∣
p

|a− xqn|p. (3.20)

By the strong triangle inequality,

| a− xqn|p ≤ max{| a|p , |xqn|p}. (3.21)

Then we have from (3.20) and (3.21) that{
|xn+1 − xn|p ≤ p(q−1)m−φn , (p 6= q),

|xn+1 − xn|q ≤ q(q−1)m−φ
′
n+1, (p = q).

(3.22)

By Lemma 2.1, (3.22) is equivalent to{
en ≡ 0 (mod pφn−(q−1)m), (p 6= q),

en ≡ 0 (mod qφ
′
n−{(q−1)m+1}), (p = q).

(3.23)
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We put {
ψn = φn − (q − 1)m, (p 6= q),
ψ′n = φn

′ − {(q − 1)m+ 1}, (p = q).
(3.24)

By (3.15), (3.17) and (3.24), we have{
ψn = 2nr −m(q · 2n − 1), (p 6= q),

ψ
′
n = 2nr − q(m+ 1)(2n − 1)− (q − 1)m− 1, (p = q).

(3.25)

Since (3.25) equals (3.19), (3.23) implies (3.18) and so the proof is com-
pleted.

Remark 3.3. By Theorem 3.2, we can calculate the number of iter-
ations to obtain a number of corrected digits in the approximation. If
p 6= q, then the rate of convergence of the sequence {xn} is of order ψn.
When r − qm > 0, the number of iterations to obtain M correct digits
n is

n =

[
ln(M−mr−qm )

ln2

]
.

If p = q, then the rate of convergence of the sequence {xn} is of order
ψ′n. When r − q(m + 1) > 0, the number of iterations to obtain M
correct digits n is

n =

[ ln(M−(m+q−1)
r−q(m+1) )

ln2

]
.
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