• Title/Summary/Keyword: nano-tech

Search Result 187, Processing Time 0.025 seconds

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells (표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능)

  • Park, Jeong Ho;Kim, Taeeon;Juon, Some;Cho, Yongil;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source (Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성)

  • Kim, Wang-Ryeol;Jung, Uoo-Chang;Jo, Hyung-Ho;Park, Min-Suk;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube (흑연 및 탄소나노튜브 혼합 방열도료의 특성)

  • Lee, Ji Hun;Song, Man-Ho;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.218-224
    • /
    • 2016
  • Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; $25{\mu}m$ graphite, $45{\mu}m$ graphite, $15{\mu}m$ carbon nanotube(CNT), a 1:1 mixture of $25{\mu}m$ graphite and $15{\mu}m$ CNT, and a 1:1 mixture of $45{\mu}m$ graphite and $15{\mu}m$ CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at $92^{\circ}C$ with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was $13.8^{\circ}C$ for the coated case and $18.0^{\circ}C$ for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.

Metallurgical Observation of the Buddhist Bell of Youngmoon Mountain Sangwonsa Temple (용문산 상원사 범종의 금속학적 고찰)

  • Doh, Jungmann;Park, Bangju;Lee, Jungil;Hong, Kyungtae
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.829-838
    • /
    • 2012
  • The microstructure, chemical composition, and lead isotope ratio of the Buddhist bell of Yongmoon Mountain Sangwonsa temple, which was selected as one of the three great bells of Korea by Japanese historians, were analyzed in order to estimate the origin of the material and the time of casting. The microstructure of the temple bell was composed of a copper matrix phase with ${\alpha}$, a face centered cubit lattice structure, a ${\delta}$ phase with $Cu_{41}$ $(Sn,Ag,Sb)_{11}$ as the chemical structural formula, dispersed lead and $Cu_2S$ particles, and locally agglomerated fine particles. Through analysis of the chemical composition of the bell, a criterion (Pb: 0-3.0 wt%, Sn: 10-15 wt%) for distinguishing the bells of the Shilla dynasty from the bells of the Koryo Chosun dynasty is proposed. Examining the lead isotope ratio of $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$ of the Buddhist bell of Sangwonsa temple proved that the bell was fabricated using raw materials in South Korea, which led to the conclusion that the bell was cast in Korea and the top board of the bell has been damaged by an unknown individual. The criteria of distinguishing the bells from the Shilla dynasty from the bells of the Koryo Chosun dynasty presented for the first time in this research is expected to aid in identifying and estimating the previously unclear production years of other bells.

Dielectric Characteristics due to the nano-pores of SiOCH Thin Flm (기공형성에 의한 SiOCH 박막의 유전 특성)

  • Kim, Jong-Wook;Park, In-Chul;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.19-23
    • /
    • 2009
  • We have studied dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was introduced with the flow rates from 24 sccm to 32 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. Then, SiOCH thin film deposited at room temperature was annealed at temperature of $400^{\circ}C$ and $500^{\circ}C$ for 30 minutes in vacuum. The vibrational groups of SiOCH thin films were analyzed by FT/IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. With the result that FTIR analysis, as BTMSM flow rate increase, relative carbon content of SiOCH thin film increased from 29.5% to 32.2%, and increased by 32.8% in 26 sccm specimen after $500^{\circ}C$ annealing. Dielectric constant was lowest by 2.32 in 26 sccm specimen, and decreased more by 2.05 after $500^{\circ}C$ annealing. Also, leakage current is lowest by $8.7{\times}10^{-9}A/cm^2$ in this specimen. In the result, shift phenomenon of chemical bond appeared in SiOCH thin film that BTMSM flow rate is deposited by 26 sccms, and relative carbon content was highest in this specimen and dielectric constant also was lowest value

  • PDF

Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating (고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결)

  • Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.

A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating (저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구)

  • Kwon, Seong-Hee;Park, Dong-Yong;Lee, Dae-Yeol;Euh, Kwang-Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

Tribology of Si3N4 Ceramics Depending on Amount of Added SiO2 Nanocolloid (SiO2 나노 콜로이드 첨가량에 따른 질화규소의 트라이볼러지)

  • Nam, Ki-Woo;Chung, Young-Kyu;Hwang, Seok-Hwan;Kim, Jong-Soon;Moon, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • We analyzed the wear characterization of $Si_3N_4$ ceramics according to the amount of added $SiO_2$ nanocolloid. The test specimen was prepared by hot-press sintering at 35 MPa and 2123 K in an $N_2$ gas atmosphere for 1 h. A wear test was performed with a block-on-ring tester, and the test conditions were as follows: (1) the ring with a diameter of 35 mm had a rotational speed of 50 rpm; (2) the load was 9.8 N; and (3) the temperature was $25^{\circ}C$. The test results show that $Si_3N_4$ ceramics have a friction coefficient of about 1.0 and a wear loss of about 0.02 mm. Of the specimens used this study, the test specimen with 1.3 wt% of added $SiO_2$ nanocolloid has the best wear resistance because it has the lowest friction coefficient and the smallest wear loss. This specimen also has the highest Vickers hardness and bending strength. In this study, the friction coefficient is inversely proportional to the hardness and bending strength.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Effects of Macrophage on Biodegradation of β-tricalcium Phosphate Bone Graft Substitute (대식세포가 β-tricalcium Phosphate 뼈이식제의 생분해에 미치는 영향)

  • Kim, Young-Hee;Jyoti, Anirban;Byun, In-Sun;Oh, Ik-Hyun;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.618-624
    • /
    • 2008
  • Various calcium phosphate bioceramics are distinguished by their excellent biocompatibility and osteoconductivity. Especially, the exceptional biodegradability of $\beta$-TCP makes it a bone graft substitute of choice in many clinical applications. The activation of osteoclasts, differentiated from macrophage precursor cells, trigger a cell-mediated resorption mechanism that renders $\beta$-TCP biodegradable. Based on this evidence, we studied the biodegradation process of granular-type $\beta$-TCP bone graft substitute through in vitro and in vivo studies. Raw 264.7 cells treated with RANKL and M-CSF differentiated into osteoclasts with macrophage-like properties, as observed with TRAP stain. These osteoclasts were cultured with $\beta$-TCP nano powders synthesized by microwave-assisted process. We confirmed the phagocytosis of osteoclasts by observing $\beta$-TCP particles in their phagosomes via electron microscopy. No damage to the osteoclasts during phagocytosis was observed, nor did the $\beta$-TCP powders show any sign of cytotoxicity. We also observed the histological changes in subcutaneous tissues of rats implanted with granule-type $\beta$-TCP synthesized by fibrous monolithic process. The $\beta$-TCP bone graft substitute was well surrounded with fibrous tissue, and 4 months after implantation, 60% of its mass had been biodegraded. Also, histological findings via H&E stain showed a higher level of infiltration of lymphocytes as well as macrophages around the granule-type $\beta$-TCP. From the results, we have concluded that macrophages play an important role in the biodegradation process of $\beta$-TCP bone graft substitutes.