DOI QR코드

DOI QR Code

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds

표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동

  • Choi, Ji-Yeon (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Jung, Hyun-Jung (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Park, Bang-Ju (College of BioNano Tech., Gachon University) ;
  • Joung, Yoon-Ki (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Park, Kwi-Deok (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Han, Dong-Keun (Center for Biomaterials, Korea Institute of Science and Technology)
  • 최지연 (한국과학기술연구원 생체재료연구단) ;
  • 정현정 (한국과학기술연구원 생체재료연구단) ;
  • 박방주 (가천대학교 바이오나노학부) ;
  • 정윤기 (한국과학기술연구원 생체재료연구단) ;
  • 박귀덕 (한국과학기술연구원 생체재료연구단) ;
  • 한동근 (한국과학기술연구원 생체재료연구단)
  • Received : 2011.11.14
  • Accepted : 2011.12.23
  • Published : 2012.05.25

Abstract

Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Poly(L-lactic acid)(PLLA) 고분자 필름 및 지지체의 세포 친화성을 향상시키기 위하여 산소 플라즈마 처리후 카복실기를 함유한 아크릴산(AA)을 $in$ $situ$ 그래프트시켰다. Stimulated body fluid(SBF) 용액에 15일간 담지시킨 후 hydroxyapatite(HA)를 형성시킨 시료와 phosphate-buffered saline(PBS), fetal bovine serum(FBS), 식염수 및 세포 배양용 배지에 담지시킨 다음 PLLA 시료 표면의 접촉각을 비교해 본 결과, HA 표면이 가장 낮은 접촉각을 나타내었다. 또한 연골세포와 조골세포는 HA 표면 위에서 높은 점착과 성장을 보였으며 연골세포가 HA에 많은 영향을 받는 것으로 확인되었다. 조골세포의 경우 HA 표면 이외에도 FBS나 세포 배양배지에 담지된 표면에서도 높은 세포 증식을 보였다. 더욱이 필름형태보다는 3차원 입체 구조의 다공성 지지체에서 연골세포와 조골세포의 점착과 세포 증식이 향상됨도 확인할 수 있었다. 이러한 표면개질된 PLLA는 조직공학적으로 연골이나 뼈 재생을 위한 유-무기 하이브리드 지지체로 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell and R. Langer, Chem. Eng. News, 73, 42 (1995).
  3. R. M. Neremand and A. Sambanis, Tissue Eng., 1, 3 (1995). https://doi.org/10.1089/ten.1995.1.3
  4. J. M. Pachence, M. P. Bohrer, and J. Kohn, "Biodegradable polymer", in Principle of Tissue Engineering, R. P. Lanza, R. Langer, and W. L. Chick, Editors, Academic Press, San Diego, p 323-339 (1997).
  5. J. A. Hubbell, Trends Polym. Sci., 2, 20 (1994).
  6. S. E. Bae, J. S. Son, K. Park, and D. K. Han, J. Control. Release, 133, 37 (2009). https://doi.org/10.1016/j.jconrel.2008.09.006
  7. H. H. Jung, K. Park, and D. K. Han, J. Control. Release, 147, 84 (2010). https://doi.org/10.1016/j.jconrel.2010.06.020
  8. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003). https://doi.org/10.1016/S0142-9612(03)00247-3
  9. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Edn., 13, 1325 (2002). https://doi.org/10.1163/15685620260449723
  10. Z. Ma, C. Cao, J. Yuan, J. Ji, Y. Gong, and J. Shen, J. Appl. Polym. Sci., 85, 2163 (2002). https://doi.org/10.1002/app.10803
  11. G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee, Biomaterials, 23, 3523 (2002). https://doi.org/10.1016/S0142-9612(02)00091-1
  12. J. Yang, J. Bei, and S. Wang, Biomaterials, 23, 2607 (2002). https://doi.org/10.1016/S0142-9612(01)00400-8
  13. H. S. Yang, K. Park, K.-D. Ahn, B. S. Kim, and D. K. Han, Polymer(Korea), 30, 268 (2006).
  14. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998). https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
  15. E. D. Boland, T. A. Telemeco, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, J. Biomed. Mater. Res.: Appl. Biomater., 71B, 144 (2004). https://doi.org/10.1002/jbm.b.30105
  16. D. Lickorish, L. Guan, and J. E. Davies, Biomaterials, 28, 1495 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.025
  17. G. Wei and P. X. Ma, Biomaterials, 25, 4749 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.005
  18. C. V. M. Rodrigues, P. Serricella, A. B. R. Linhares, R. M. Guerdes, R. Borojevic, M. A. Rossi, M. E. L. Duarte, and M. Farina, Biomaterials, 24, 4987 (2003). https://doi.org/10.1016/S0142-9612(03)00410-1
  19. X. Zhu, O. Eibl, L. Scheideler, and J. Geis-Gerstorfer, J. Biomed. Mater. Res., 79A, 114 (2006). https://doi.org/10.1002/jbm.a.30706
  20. M. Bohner and J. Lemaitre, Biomaterials, 30, 2175 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.008
  21. K. Park, H. J. Jung, J.-J. Kim, and D. K. Han, J. Bioact. Compat. Polym., 25, 27 (2010). https://doi.org/10.1177/0883911509353677
  22. T. Albrektsson and C. Johansson, Eur. Spine J., 10, S96 (2001). https://doi.org/10.1007/s005860100282
  23. Z. Yang, S. Si, X. Zeng, C. Zhang, and H. Dai, Acta Biomater., 4, 560 (2008). https://doi.org/10.1016/j.actbio.2007.10.003
  24. M. Rouahi, O. Gallet, E. Champion, J. Dentzer, P. Hardouin, and K. Anselme, J. Biomed. Mater. Res., 78A, 222 (2006). https://doi.org/10.1002/jbm.a.30682
  25. J. B. Lee, S. G. Lee, S. M. Yoo, J. C. Park, J. B. Choi, and J. K. Kim, Biomater. Res., 10, 196 (2006).
  26. K. L. Kilpadi, P. L. Chang, and S. L. Bellis, J. Biomed. Mater. Res., 57, 258 (2001). https://doi.org/10.1002/1097-4636(200111)57:2<258::AID-JBM1166>3.0.CO;2-R
  27. K. M. Woo, J. Seo, R. Zhang, and P. X. Ma, Biomaterials, 28, 2622 (2007). https://doi.org/10.1016/j.biomaterials.2007.02.004

Cited by

  1. Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization vol.11, pp.18, 2016, https://doi.org/10.2217/nnm-2016-0189