DOI QR코드

DOI QR Code

Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating

고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결

  • Kang, Hyun-Su (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Park, Bang-Ju (College of BioNano Tech., Gachon University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
  • 강현수 (전북대학교 신소재공학부) ;
  • 도정만 (한국과학기술연구원 계면제어연구센터) ;
  • 윤진국 (한국과학기술연구원 계면제어연구센터) ;
  • 박방주 (가천대학교 바이오나노학부) ;
  • 손인진 (전북대학교 신소재공학부)
  • Received : 2012.03.30
  • Published : 2012.12.25

Abstract

Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.

Keywords

Acknowledgement

Supported by : 한국에너지평가원(KETEP)

References

  1. X. Zhou, Y. Yuan, L. Xiang, and Y. Huang, J. Mater. Sci. 42, 6628 (2007). https://doi.org/10.1007/s10853-007-1510-4
  2. H. Jantunen, R. Rautioaho, A. Uusimki, S. Leppvuori, J. Eur. Ceram. Soc. 20, 2331 (2000). https://doi.org/10.1016/S0955-2219(00)00145-X
  3. V. M. Ferreira, J. L. Baptista J. Petzelt, G. A. Komandin, and V. V. Voitsekhovskii, J. Mater. Res. 10, 2301 (1995). https://doi.org/10.1557/JMR.1995.2301
  4. Karch, R. Birringer, H. Gleiter. Nature 330, 556 (1987). https://doi.org/10.1038/330556a0
  5. A. M. George, J. Iniguuze, L. Bellaiche, Nature 413, 54 (2001). https://doi.org/10.1038/35092530
  6. D. Hreniak, W. Strek, J. Alloys Comp. 341, 183 (2002). https://doi.org/10.1016/S0925-8388(02)00067-1
  7. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  8. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  9. I. J. Shon, K. I. Na, C. Y. Suh, S. W. Cho, S. H. Oh, W. Kim, Met. Mater. Int. 17, 743 (2011). https://doi.org/10.1007/s12540-011-1008-0
  10. W. Kim, J. S. Park, C. Y. Suh, S. W. Chon, S. L. and I. J. Shon, Mater. Trans. 50, 2897 (2009). https://doi.org/10.2320/matertrans.M2009297
  11. J. Jung and S. Kang, Scr. Mater. 56, 561 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.026
  12. N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 17, 233 (2011). https://doi.org/10.1007/s12540-011-0408-5
  13. I. J. Shon, S. L. Du, I. Y. Ko, J. M. Doh, J. K. Yoon, and J. H. Park, Electron. Mater. Lett. 7, 133 (2011). https://doi.org/10.1007/s13391-011-0608-7
  14. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011). https://doi.org/10.3365/KJMM.2011.49.3.231
  15. C. Suryanarayana and M. G. Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  16. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer-Verlag, London (1991).
  17. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  18. J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  19. J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  20. J. E. Garay, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  21. R. L. Coble, J. Appl. Phys. 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  22. H. C. Kim, I. J. Shon, I. K. Jeong, and I. Y. Ko, Metal. Mater. Int. 12, 393 (2006). https://doi.org/10.1007/BF03027705
  23. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).