Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.3.357

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds  

Choi, Ji-Yeon (Center for Biomaterials, Korea Institute of Science and Technology)
Jung, Hyun-Jung (Center for Biomaterials, Korea Institute of Science and Technology)
Park, Bang-Ju (College of BioNano Tech., Gachon University)
Joung, Yoon-Ki (Center for Biomaterials, Korea Institute of Science and Technology)
Park, Kwi-Deok (Center for Biomaterials, Korea Institute of Science and Technology)
Han, Dong-Keun (Center for Biomaterials, Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.36, no.3, 2012 , pp. 357-363 More about this Journal
Abstract
Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.
Keywords
PLLA; surface modification; hydroxyapatite (HA); stimulated body fluid (SBF); cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Lickorish, L. Guan, and J. E. Davies, Biomaterials, 28, 1495 (2007).   DOI   ScienceOn
2 G. Wei and P. X. Ma, Biomaterials, 25, 4749 (2004).   DOI   ScienceOn
3 C. V. M. Rodrigues, P. Serricella, A. B. R. Linhares, R. M. Guerdes, R. Borojevic, M. A. Rossi, M. E. L. Duarte, and M. Farina, Biomaterials, 24, 4987 (2003).   DOI   ScienceOn
4 M. Bohner and J. Lemaitre, Biomaterials, 30, 2175 (2009).   DOI   ScienceOn
5 X. Zhu, O. Eibl, L. Scheideler, and J. Geis-Gerstorfer, J. Biomed. Mater. Res., 79A, 114 (2006).   DOI   ScienceOn
6 K. Park, H. J. Jung, J.-J. Kim, and D. K. Han, J. Bioact. Compat. Polym., 25, 27 (2010).   DOI   ScienceOn
7 T. Albrektsson and C. Johansson, Eur. Spine J., 10, S96 (2001).   DOI   ScienceOn
8 Z. Yang, S. Si, X. Zeng, C. Zhang, and H. Dai, Acta Biomater., 4, 560 (2008).   DOI   ScienceOn
9 M. Rouahi, O. Gallet, E. Champion, J. Dentzer, P. Hardouin, and K. Anselme, J. Biomed. Mater. Res., 78A, 222 (2006).   DOI   ScienceOn
10 J. B. Lee, S. G. Lee, S. M. Yoo, J. C. Park, J. B. Choi, and J. K. Kim, Biomater. Res., 10, 196 (2006).
11 K. L. Kilpadi, P. L. Chang, and S. L. Bellis, J. Biomed. Mater. Res., 57, 258 (2001).   DOI   ScienceOn
12 K. M. Woo, J. Seo, R. Zhang, and P. X. Ma, Biomaterials, 28, 2622 (2007).   DOI   ScienceOn
13 R. Langer and J. P. Vacanti, Science, 260, 920 (1993).   DOI   ScienceOn
14 J. A. Hubbell and R. Langer, Chem. Eng. News, 73, 42 (1995).
15 R. M. Neremand and A. Sambanis, Tissue Eng., 1, 3 (1995).   DOI
16 J. M. Pachence, M. P. Bohrer, and J. Kohn, "Biodegradable polymer", in Principle of Tissue Engineering, R. P. Lanza, R. Langer, and W. L. Chick, Editors, Academic Press, San Diego, p 323-339 (1997).
17 J. A. Hubbell, Trends Polym. Sci., 2, 20 (1994).
18 S. E. Bae, J. S. Son, K. Park, and D. K. Han, J. Control. Release, 133, 37 (2009).   DOI   ScienceOn
19 Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 24, 3725 (2003).   DOI   ScienceOn
20 H. H. Jung, K. Park, and D. K. Han, J. Control. Release, 147, 84 (2010).   DOI   ScienceOn
21 J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomater. Sci. Polym. Edn., 13, 1325 (2002).   DOI   ScienceOn
22 Z. Ma, C. Cao, J. Yuan, J. Ji, Y. Gong, and J. Shen, J. Appl. Polym. Sci., 85, 2163 (2002).   DOI   ScienceOn
23 G. C. M. Steffens, L. Nothdurft, G. Buse, H. Thissen, H. Hocher, and D. Klee, Biomaterials, 23, 3523 (2002).   DOI   ScienceOn
24 J. Yang, J. Bei, and S. Wang, Biomaterials, 23, 2607 (2002).   DOI   ScienceOn
25 H. S. Yang, K. Park, K.-D. Ahn, B. S. Kim, and D. K. Han, Polymer(Korea), 30, 268 (2006).
26 J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res., 42, 417 (1998).   DOI
27 E. D. Boland, T. A. Telemeco, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, J. Biomed. Mater. Res.: Appl. Biomater., 71B, 144 (2004).   DOI