Browse > Article
http://dx.doi.org/10.7316/KHNES.2014.25.1.028

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells  

Park, Jeong Ho (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Kim, Taeeon (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Juon, Some (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Cho, Yongil (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Cho, Kwangyeon (Nano Convergence Intelligence Materials Team, Korea Institute of Ceramic Eng. and Tech.)
Shul, Yonggun (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.25, no.1, 2014 , pp. 28-38 More about this Journal
Abstract
The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.
Keywords
Silicon carbide fiber; Aquivion; Composite membrane; Polarization curve; Electrochemical impedance spectroscopy analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Rikukawa, and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., Vol. 25, 2000, pp. 1463-1502.   DOI   ScienceOn
2 Y. T. Kim, K. H. Kim, M. K. Song, and H. W. Rhee, "Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells", Curr. Appl. Phys., Vol. 6, 2006, pp. 614-615.   과학기술학회마을   DOI
3 R. Hammami, Z. Ahanmed, K. Charradi, Z. Beji, I. B. Assaker, J. B. Naceur, B. Auvity, G. Squadrito, and R. Chtourou, "Elaboration and characterization of hybrid polymer electrolytes Nafion-TiO2 for PEMFCs", Int. J. Hydrogen. Energy., Vol. 38, 2013, pp. 11583-11590.   DOI
4 N. H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of $Nafion^{(R)}$-$MO_2$(M=Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells", Electrochim. Acta., Vol. 51, 2005, pp. 553-560.   DOI   ScienceOn
5 Y. S. Ye, C. Y. Tseng, W. C. Shen, J. S. Wang, K. J. Chen, M. Y. Cheng, J. Rick, Y. J. Huang, F. C. Chang, and B. J. Hwang, "A new graphenemodified protic ionic liquid-based composite membrane for solid polymer electrolytes", J. Mater. Chem., Vol. 21, 2011, pp. 10448-10453.   DOI
6 A. Bauen, and D. Hart, "Assessment of the environmental benefits of transport and stationary fuel cells", J. Power. Sources., Vol. 86, 2000, pp. 482-494.   DOI   ScienceOn
7 B. C. H. Steele, and A. Heinzel, "Materials for fuel cell technologies", Nature, Vol. 414, 2001, pp. 345-352.   DOI   ScienceOn
8 M. L. Perry, and T. F. Fuller, "A Historical Perspective of Fuel Cell Technology in the 20th Century", J. Electrochem. Soc., Vol. 419, No. 7, 2002, pp. S59-S67.
9 N. Agmon, "The Grotthuss mechanism", Chemical Physics Letters, Vol. 244, 1995, 456-462.   DOI
10 R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., Vol. 47, 2008, pp. 2653-2656.   DOI
11 H. A. Liu, and K. J. Balkus Jr., "Electrospinning of beta silicon carbide nanofibers", Mater. Lett., Vol. 63, 2009, 2361-2364.   DOI   ScienceOn
12 A. R. Bunsell, and A. Piant, "A review of the development of three generations of small diameter silicon carbide fibres", J. Mater. Sci., Vol. 41, 2006, pp. 823-839.   DOI
13 Y. Hasegawa, "Synthesis of continuous silicon carbide fibre-Part 6: Pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre", J. Mater. Sci., Vol. 24, 1989, pp. 1177-1190.   DOI   ScienceOn
14 H. Q. Ly, R. J. Day, F. Heatly, "Conversion of Polycarbosilane(PCS) to SiC-Based Ceramic part 1. Characterization of PCS and Curing Products", J. Mater. Sci., Vol. 36, 2001, pp. 4037-4043.   DOI   ScienceOn
15 J. J. Sha, J. S. Park, T. Hinoki, A. Kohyama, "Heat treatment effects on creep behavior of polycrystalline SiC fibers", Materials Characterization, Vol. 57, 2006, pp. 6-11.   DOI
16 M. Kamal, I. K. Battisha, M. A. Salem, "Structural and thermal properties of monolithic silicaphosphate($SiO_2-P_2O_5$) gel glasses prepared by sol-gel technique", J. Sol-Gel. Sci. Technol., Vol. 58, 2011, pp. 507-517.   DOI
17 T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. Gottesfeld, "Characterization of polymer eletrolyte fuel cell using AC impedance spectroscopy", J. Electrochem. Soc., Vol. 143, 1996, pp. 587-599.   DOI
18 S. Yajima, Y. Hasegawa, K. Okamura, and T. Matsuzawa, "Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor", Nature, Vol. 273, 1978, pp. 525-527.   DOI
19 S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9349-9384.   DOI
20 A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. S. Arico, L. Merlo, C. Oldani, and E. Pagano, "Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation", J. Power. Sources., Vol. 196, 2011, pp. 8925-8930.   DOI