• 제목/요약/키워드: nano-glass

검색결과 507건 처리시간 0.026초

Glass Frit을 이용한 염료감응 태양전지의 광 특성 연구 (Effect of Glass Frit in $TiO_2$ Electrode for DSSCs)

  • 김종우;전재승;김동선;황성진;김형순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • Dye sensitized solar cells(DSSCs) have been extensively studied due to their various advantages such as low production cost, colorful design, and eco-friendly process. Long optical path length is one of the most effective method to improve light harvest efficiency for DSSCs. Multi-layered $TiO_2$ nano-structured film with scattering layer has been studied to generate scattering effect by many researchers. It was expected that the difference of refractive index between $TiO_2$ particles and glass frit would generate the light scattering effect and provide the long optical path length. Therefore, to enhance the scattering effect, the frits of $Bi_2O_3-B_2O_3$-ZnO glass system that has the different refractive index were added to $TiO_2$ pastes in this study. First of all, the absorbance and haze factor of $TiO_2$ electrode with dyes and the refractive index of glass frit and $TiO_2$ were measured, respectively. To study the effect of frits, the efficiencies of DSSCs added glass frit and without glass frit were compared. Our results showed slightly higher efficiency with the different absorbance and haze factor of $TiO_2$ and glass frit. It was considered that the light scattering effect would be improved with adding frits to $TiO_2$ paste. Our preliminary studies will be useful for increasing efficiency of DSSCs.

  • PDF

Anorthite 글라스 프릿이 첨가된 감광성 은 페이스트의 전기적 특성 및 부착력 특성 평가 (Effect of Anorthite Glass Frit on the Electrical and Adhesion Properties of Photosensitive Silver Paste)

  • 이은혜;김효태;임종우;윤영준;김종희;박은태;이종면;백운규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.21-21
    • /
    • 2009
  • 후막 광식각 기술을 이용하여 형성된 Ag 전극과 LTCC 기판 사이의 접착력을 향상시키기 위하여 무기 바인더로서 anorthite, diopside 및 MLS-62 glass frit을 첨가하여 감광성 Ag paste를 제조하였다. 소성 후의 glass pool effect를 감소시키기 위해 attrition mill을 통하여 미세 glass 분말을 준비하였다. Glass frit은 Ag powder의 5vol%~25vol%의 함량으로 첨가하여 감광성 Ag paste를 제조하였고 패턴 형성 후 $850^{\circ}C$에서 1시간 소결하였다. 전극과 기판 사이의 접착력은 micro-ball shear test 법으로 측정하였으며, Ag 전극 부착력은 glass frit의 함량 증가에 따라 증가하다가 감소하는 경향을 보이는데, 이는 과량의 glass frit 첨가로 인한 전극 내부에 액상 풀의 형성에 기인한 것으로 보여진다. Ag 전극의 면저항은 glass frit의 함량이 증가함에 따라 $0.13m{\Omega}{/\square}$에서 $2.06m{\Omega}{/\square}$까지 증가하는 경향을 나타내었다. 소성 전후의 전극 패턴의-수축율은 $100{\mu}m$의 선폭을 기준으로 glass frit의 첨가랑이 증가할수록 43.3%에서 35.0%로 감소하였으며, 그 결과 최소 선폭 $25{\mu}m$의 미세 전극 패턴의 형성이 가능하였다.

  • PDF

머플 가열로에서의 대면적 유리기판의 가열공정에 대한 열적 연구 (HEAT-TREATMENT OF LARGE-SCALE GLASS BACKPLANES IN A MUFFLE FURNACE)

  • 김동현;손기헌;허남건;김병국;김형준;박승호
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.16-23
    • /
    • 2012
  • Current display manufacturing processes apply thermal treatment of glass backplanes widely for hydrogen degassing, crystallization of thin-films, tempering, forming, and precompaction. Estimation of the characteristics of transient heating stages and thermal non-uniformities on a single glass substrate or in a stack of glasses are extremely helpful to understand non-homogeneity of mechanical and electronic features of nano/micro structures of end products. Based on simple heat transfer models and using an electric muffle furnace, temperature variations in a glass stack were predicted and measured for glass backplanes of $1.5{\times}1.85m^2$ in size and 0.7 mm in thickness. Except for the period of putting glass backplanes into the furnace, thermal radiation was the major heating mechanism for the treatment and theoretical predictions agreed well to the experimental temperatures on the backplanes. Using the theoretical model, thermal fields for a glass stack of glass-size, $2.2{\times}2.5m^2$, and of the number of sheets, 1 to 12, were calculated for practical design and manufacturing of the muffle furnace for large-scale displays, e.g. up to $8^{th}$ generation.

Electrical and Thermal Characterization of Organic Varnish Filled with ZrO2 Nano Filler Used in Electrical Machines

  • Selvaraj, D. Edison;Vijayaraj, R.;Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1700-1711
    • /
    • 2015
  • In the last decade it has been witnessed significant developments in the area of nano particles and nano scale fillers on electrical, thermal, and mechanical properties of polymeric materials such as resins, varnishes, enamel and bakelites. The electric and thermal properties were more important in the electrical equipments for both steady state and transient state conditions. This paper deals with the characterization of the electric and thermal properties of the pure varnish and zirconia (ZrO2) filler mixed varnish. The electric properties such as dielectric loss (tan δ), dielectric constant (ε), dielectric strength and partial discharge voltage were analyzed and detailed for different samples. It was observed that zirconia nano filler mixed varnish has the superior dielectric and thermal properties when compared to those of standard varnish. It has shown that at power frequency the 1wt% nano composite sample has the higher permittivity value when compared to other samples. It has been examined that the 1wt% sample was having higher inception and extinction voltages when compared to other samples. It has been observed that 1wt% sample has higher dielectric strength when compared with other samples. There has been an improvement of thermal property by adding few weight percent of zirconia nano fillers. There was not much variation in glass transition among the nano mixed composites. The weight loss was improved at 1wt% of the zirconia nano fillers.

Electrodeposition에 의해 성장온도와 시간을 달리하여 성장한 ZnO 나노구조의 특성 (Effects of Growth Temperature and Time on Properties of ZnO Nanostructures Grown by Electrodeposition Method)

  • 박영빈;남기웅;박선희;문지윤;김동완;강해리;김하은;이욱빈;임재영
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.204-209
    • /
    • 2014
  • The electrodeposition of ZnO nanorods was performed on ITO glass. The optimization of two process parameters (solution temperature and growth time) has been studied in order to control the orientation, morphology, density, and growth rate of ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results of the structural property show that hexagonal ZnO nanorods with wurtzite crystal structures have a c-axis orientation, and higher intensity for the ZnO (002) diffraction peaks. Furthermore, the nanorods length increased with increasing both the solution temperature and the growth time. The results of the optical property show a strong UV (3.28 eV) peaks and a weak visible (1.9~2.4 eV) bands, the intensity of UV peaks was increased with increasing both the solution temperature and the growth time. Especially, the UV peak for growth of nanorods at $75^{\circ}C$ blue-shift than different temperatures.

전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과 (Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method)

  • 박영빈;남기웅;박선희;문지윤;김동완;강해리;김하은;이욱빈;임재영
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.198-203
    • /
    • 2014
  • ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.

Fabrication of SOI FinFET Devices using Arsenic Solid-phase-diffusion

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.394-398
    • /
    • 2007
  • A simple doping method to fabricate a very thin channel body of the nano-scaled n-type fin field-effect-transistor (FinFET) by arsenic solid-Phase-diffusion (SPD) process is presented. Using the As-doped spin-on-glass films and the rapid thermal annealing for shallow junction, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. The n-type FinFET devices with a gate length of 20-100 nm were fabricated by As-SPD and revealed superior device scalability.

S-L-S 성장기구를 이용한 양질의 골드 나노선 합성 (Synthesis of Au Nanowires Using S-L-S Mechanism)

  • 노임준;김성현;신백균;조진우
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

생체활성 유리 나노입자 첨가량에 따른 치면열구전색제의 물성평가와 세균부착 억제 효과 (Effect of Physical Properties and Bacterial Adherence Inhibition of Pit and Fissure Sealant Containing Bioactive Glass Nano Particles(BGn))

  • 전수경;김동애
    • 한국콘텐츠학회논문지
    • /
    • 제18권3호
    • /
    • pp.542-549
    • /
    • 2018
  • 본 연구는 불소 미방출 치면열구전색제 $Concise^{TM}$에 제조한 생체활성 유리 나노입자(bioactive glass nano particles: BGn)를 0.5, 1.0, 2.0 wt%를 첨가하여 새로운 치면열구전색제를 조성하고 세균부착실험을 통한 세균부착 억제 효과와 물성을 평가 하였다. 물흡수도와 용해도는 ISO 4049(2009) 규격에 맞추어 직경 10 mm, 두께 2 mm 시편을 제작하여 무게를 측정하여 산출하였으며 세균부착효과는 S. mutans, S. aureus, E. coli 3개의 균주를 이용하여 평가하였다. 실험 결과 물흡수도는 BGn 첨가가 증가할수록 높은 값을 보였으며 용해도는 첨가될수록 낮은 용해도를 보였다(p<0.05). 세균부착실험 결과 대조군 $Concise^{TM}$과 비교하여 BGn을 첨가한 S. mutans 실험군에서 다소 낮은 부착 양상을 보였으나 통계적 유의한 차이는 나타나지 않았으나, S. aureus 실험군과 E.coli 실험군에서는 통계적 유의한 차이를 보였다(p<0.05). 이는 BGn의 세균부착 억제 효과가 있음을 입증한 것이라 사료된다. 향후 BGn 첨가양에 따른 효율성과 폭 넓은 물성 연구가 필요할 것으로 사료된다.

Sol-gel 법에 의한 초발수 $SiO_2$ 박막의 제조 및 특성 (Fabrication and properties of superhydrophobic $SiO_2$ thin film by sol-gel method)

  • 김진호;황종희;임태영;김세훈
    • 한국결정성장학회지
    • /
    • 제19권6호
    • /
    • pp.277-281
    • /
    • 2009
  • 초발수 $SiO_2$ 박막을 sol-gel법에 의해 유리 기판 위에 성공적으로 제조하였다. 높은 표면 조도를 갖는 $SiO_2$ 박막을 제조하기 위하여 tetraethoxysilane(TEOS) 용액에 $SiO_2$ 나노 입자들을 첨가하였다. $iO_2$ 입자를 첨가하지 않은 용액을 이용하여 제조한 코팅막은 RMS roughness가 1.27 nm의 매우 평평한 표면 구조를 나타낸 반면, $SiO_2$ 나노 입자들을 1.0, 2.0, 3.0 wt% 첨가한 용액을 이용하여 제조한 $SiO_2$ 박막의 RMS roughness는 44.10 nm, 69.58 nm, 80.66 nm로 측정되었다. 제조된 $SiO_2$ 박막의 표면을 소수성 표면으로 바꾸기 위하여 FAS 용액을 이용하여 발수 처리를 하였다. FAS 처리 이후 거친 표면구조를 갖는 $SiO_2$ 박막의 표면은 친수성에서 소수성으로 바뀌었고 특히, 80.66 nm의 RMS roughness를 갖는 박막은 $163^{\circ}$의 물 접촉각을 갖는 초발수 표면을 나타내었다.