Browse > Article
http://dx.doi.org/10.5695/JKISE.2014.47.4.198

Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method  

Park, Youngbin (Department of Nano Engineering, Inje University)
Nam, Giwoong (Department of Nano Engineering, Inje University)
Park, Seonhee (Department of Nano Engineering, Inje University)
Moon, Jiyun (Department of Nano Engineering, Inje University)
Kim, Dongwan (Department of Nano Engineering, Inje University)
Kang, Hae Ri (Department of Nano Engineering, Inje University)
Kim, Haeun (Department of Nano Engineering, Inje University)
Lee, Wookbin (Department of Nano Engineering, Inje University)
Leem, Jae-Young (Department of Nano Engineering, Inje University)
Publication Information
Journal of the Korean institute of surface engineering / v.47, no.4, 2014 , pp. 198-203 More about this Journal
Abstract
ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.
Keywords
Zinc oxide; Nanostructure; Electrodepositon; Photoluminescence; X-ray diffraction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Zhang, G. Du, B. Liu, H. Zhu, T. Yang, W. Li, D. Liu, S. Yang, J. Cryst. Growth, 262 (2004) 456.   DOI   ScienceOn
2 S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, J.-Y. Leem, Electron. Mater. Lett., 9 (2013) 293.   DOI   ScienceOn
3 S. Kim, H. Park, G. Nam, H. Yoon, B. Kim, I. Ji, Y. Kim, I. Kim, Y. Park, D. Kang, J.-Y. Leem, Electron. Mater. Lett., 10 (2014) 81.   DOI   ScienceOn
4 Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett., 90 (2003) 185502.   DOI   ScienceOn
5 H. K. Lee, M. S. Kim, J. S. Kim, Nanotechnology, 22 (2011) 445602.   DOI   ScienceOn
6 Kenry, C. T. Lim, Prog. Mater Sci., 58 (2013) 705.   DOI   ScienceOn
7 X. Wang, C. J. Summers, Z. L. Wang, Nano Lett., 4 (2004) 423.   DOI   ScienceOn
8 B. Pardhan, S. K. Batabyal, A. J. Pal, Sol. Energy Mater. Sol. Cells, 91 (2007) 769.   DOI   ScienceOn
9 R. Konenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett., 85 (2004) 6004.   DOI   ScienceOn
10 H. Haga, F. Katahira, H. Watanabe, Thin Solid Films, 343 (1999) 145.
11 J. H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth, 226 (2001) 493.   DOI   ScienceOn
12 M. Lzaki, S. Watase, H. Takahashi, Appl. Phys. Lett., 83 (2003) 4930.   DOI   ScienceOn
13 Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z. Wang, Y. Hu, J. Solid State Chem., 179 (2006) 1984.   DOI   ScienceOn
14 S. Kim, M. S. Kim, G. Nam, J.-Y. Leem, Electron. Mater. Lett., 8 (2012) 445.   DOI   ScienceOn
15 A. Take, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, Phys. Rev. B, 70 (2004) 195207.   DOI   ScienceOn
16 S. Baek, S. Lim ; Thin Solid Films, 517 (2009) 4560.   DOI   ScienceOn
17 B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, f. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, S.Xiaosong, Appl. Surf. Sci., 257 (2011) 10317.   DOI   ScienceOn
18 Z. Wang, X.-F. Qian, J. Yin, Z.-K. Zhu, J. Solid State Chem., 177 (2004) 2144.   DOI   ScienceOn
19 M. Tolosa, L. Damonte, H. Brine, H. Bolink, M. Fenollosa, Nanoscale Res. Lett., 8 (2013) 135.   DOI   ScienceOn