• Title/Summary/Keyword: nano bulk

Search Result 271, Processing Time 0.027 seconds

New RF Empirical Nonlinear Modeling for Nano-Scale Bulk MOSFET (나노 스케일 벌크 MOSFET을 위한 새로운 RF 엠피리컬 비선형 모델링)

  • Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.33-39
    • /
    • 2006
  • An empirical nonlinear model with intrinsic nonlinear elements has been newly developed to predict the RF nonlinear characteristics of nano-scale bulk MOSFET accurately over the wide bias range. Using an extraction method suitable for nano-scale MOSFET, the bias-dependent data of intrinsic model parameters have been accurately obtained from measured S-parameters. The intrinsic nonlinear capacitance and drain current equations have been empirically obtained through 3-dimensional curve-fitting to their bias-dependent curves. The modeled S-parameters of 60nm MOSFET have good agreements with measured ones up to 20GHz in the wide bias range, verifying the accuracy of the nano-scale MOSFET model.

Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정 시 치밀화의 유한요소해석)

  • Yoon, Seung-Chae;Quang, Pham;Chun, Byong-Sun;Lee, Hong-Ro;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

The Effect of Pre-compaction on Density and Mechanical Properties of Magnetic Pulsed and Sintered $Al_2O_3$ Bulk

  • Hong, S.J.;Lee, J.K.;Lee, M.K.;Kim, W.W.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.967-968
    • /
    • 2006
  • This research reports for the successful consolidation of $Al_2O_3$ powder with retained ultra-fine structure using MPC and sintering. Measurements in the consolidated $Al_2O_3$ bulk indicated that hardness, fracture toughenss, and breakdown voltage have been much improved relative to the conventional polycrystalline materials. Finally, optimization of the compaction parameters and sintering conditions will lead to the consolidation of $Al_2O_3$ nanopowder with higher density and even further enhanced mechanical properties.

  • PDF

Characteristics of the Nd:YAG laser Spot Welding in $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ Bulk Metallic Glass Alloy ($Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ 벌크비정질 합금의 Nd:YAG 레이저 점용접 특성)

  • Kim, J.H.;Lee, J.H.;Shin, S.Y.;Bae, J.C.;Lee, C.H.
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.13-20
    • /
    • 2005
  • Weldability is largely dependent on the phase evolution and the microstructure of the weld. For the weldability of the $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass, the crystallization affects the sensitivity of the weld to the brittle failure. In order to suppress the irreversible crystallization, Nd:YAG laser welding was chosen. The pulsed Nd:YAG laser was irradiated onto the BMG plate and the effects of the pulse shape [peak power intensity and pulse duration time] on the crystallinity were evaluated.

  • PDF

Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders (Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성)

  • Kim Taek-Soo;Lee Jin-Kyu;Kim Hwi-Jun;Bae Jung-Chan
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

Nature of Surface and Bulk Defects Induced by Epitaxial Growth in Epitaxial Layer Transfer Wafers

  • Kim, Suk-Goo;Park, Jea-Gun;Paik, Un-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.143-147
    • /
    • 2004
  • Surface defects and bulk defects on SOI wafers are studied. Two new metrologies have been proposed to characterize surface and bulk defects in epitaxial layer transfer (ELTRAN) wafers. They included the following: i) laser scattering particle counter and coordinated atomic force microscopy (AFM) and Cu-decoration for defect isolation and ii) cross-sectional transmission electron microscope (TEM) foil preparation using focused ion beam (FIB) and TEM investigation for defect morphology observation. The size of defect is 7.29 urn by AFM analysis, the density of defect is 0.36 /cm$^2$ at as-direct surface oxide defect (DSOD), 2.52 /cm$^2$ at ox-DSOD. A hole was formed locally without either the silicon or the buried oxide layer (Square Defect) in surface defect. Most of surface defects in ELTRAN wafers originate from particle on the porous silicon.

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Improving the Thermal Stability of Ni-Silicide Using Ni-V On Boron Cluster Implantend Source/drain for Nano-Scale CMOSFETs

  • Li, Shi-Guang;Lee, Won-Jae;Zhang, Ying-Ying;Zhun, Zhong;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.3-4
    • /
    • 2006
  • 본 논문에서는 nano-scale CMOSFET을 위해 Boron Cluster ($B_{18}H_{22}$)가 이온주입된 SOI 와 Bulk 기판들 이용하였으며 실리사이드의 열 안정성 개선을 위해 Ni-V을 증착한 것과 순수 Ni을 증착한 것을 비교 분석 하였다. 결과 SOI위에 Ni-V을 증착한 것이 제일 낮은 면 저항을 보여주었고 반대로 Bulk위에는 제일 높은 면 저항을 보여 주었다. 단면을 측정한 결과 SOI 위에 Ni-V을 증착한 동일 조건의 Ni보다 Silicide의 두께가 두껍게 형성된 것을 확인하였다.

  • PDF