DOI QR코드

DOI QR Code

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook (Department of Physics and Astronomy Seoul National University) ;
  • Kim, Dongwook (Department of Physics and Astronomy Seoul National University) ;
  • Na-Phattalung, Sutassana (Department of Basic Science and Physical Education Faculty of Science at Si Racha, Kasetsart University) ;
  • Ihm, Jisoon (Department of Physics Pohang University of Science and Technology)
  • Received : 2018.06.15
  • Accepted : 2018.12.06
  • Published : 2018.12.31

Abstract

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Keywords

References

  1. J.-R. Wen, M.-H. Liu and C.-Y. Mou, Cryst. Eng. Commun. 17, 1959 (2015). https://doi.org/10.1039/C4CE02506G
  2. T. He, L. Xiang and S. Zhu, Langmuir 24, 8284 (2008), PMID: 18572892. https://doi.org/10.1021/la8008514
  3. P. Mohan, R. Shinta, J. Fujiwara, H. Takahashi, D. Mott, Y. Matsumura, G. Mizutani, K. Iwami, N. Umeda and S. Maenosono, Sens. Actuators B, Chem. 168, 429 (2012). https://doi.org/10.1016/j.snb.2012.04.055
  4. K. Mahmoodi and B. Alinejad, Powder Technol. 199, 289 (2010). https://doi.org/10.1016/j.powtec.2010.01.019
  5. Y. Zhao and R. L. Frost, J. Colloid Interf. Sci. 326, 289 (2008). https://doi.org/10.1016/j.jcis.2008.07.034
  6. S. Shen, W. Ng, Q. Chen, X. T. Zeng and R. B. H. Tan, Materials Letters 61, 4280 (2007). https://doi.org/10.1016/j.matlet.2007.01.085
  7. M.-G. Ma and J.-F. Zhu, Material Letters 63, 881 (2009). https://doi.org/10.1016/j.matlet.2009.01.022
  8. X. Y. Chen, H. S. Huh and S. W. Lee, Nanotechnol. 18, 285608 (2007). https://doi.org/10.1088/0957-4484/18/28/285608
  9. J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B 54, 16533 (1996). https://doi.org/10.1103/PhysRevB.54.16533
  10. P. E. Bl€ochl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  11. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  12. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
  13. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  14. J. H. Jung, C.-H. Park and J. Ihm, Nano Lett. 18, 2759 (2018), PMID: 29667831. https://doi.org/10.1021/acs.nanolett.7b04201
  15. A. Christensen, M. S. Lehmann and P. Convert, Acta Chem. Scand. 36, 303 (1982).
  16. A. Kiss, G. Keresztury and L. Farkas, Spectrochim. Acta A. Molecular Spectroscopy 36, 653 (1980). https://doi.org/10.1016/0584-8539(80)80024-9
  17. C. E. Corbato, R. T. Tettenhorst and G. G. Christoph, Clays Clay Miner. 33, 71 (1985). https://doi.org/10.1346/CCMN.1985.0330108
  18. R. Slade and T. Halstead, J. Solid State Chem. 32, 119 (1980). https://doi.org/10.1016/0022-4596(80)90275-3
  19. M. Digne, P. Sautet, P. Raybaud, H. Toulhoat and E. Artacho, J. Phys. Chem. B 106, 5155 (2002).
  20. D. Tunega, H. Pasalic, M. H. Gerzabek and H. Lischka, J. Phys. Condens. Matter 23, 404201 (2011). https://doi.org/10.1088/0953-8984/23/40/404201
  21. Y. Li, C. M. Lousada and P. A. Korzhavyic, J. Appl. Phys. 115, 203514 (2014). https://doi.org/10.1063/1.4879897
  22. R. Demichelis, Y. Noel, P. Ugliengo, C. M. Zicovich- Wilson and R. Dovesi, J. Phys. Chem. C 115, 13107 (2011). https://doi.org/10.1021/jp200523x
  23. R. Zacharia, H. Ulbricht and T. Hertel, Phys. Rev. B 69, 155406 (2004). https://doi.org/10.1103/PhysRevB.69.155406
  24. K. Momma and F. Izumi, J. Appl. Crystallograph. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970