• Title/Summary/Keyword: multiferroic film

Search Result 14, Processing Time 0.034 seconds

Magnetic Properties of Multiferroic $BiFeO_3/BaTiO_3$ Bi-layer Thin Films

  • Yang, P.;Byun, S.H.;Kim, K.M.;Lee, Y.H.;Lee, J.Y.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.318-319
    • /
    • 2008
  • In this article, magnetic properties of multiferroic bi-layer $BiFeO_3$ (BFO)/$BaTiO_3$ (BTO) thin films were studied. It was found that the magnetization increased by the insertion of BTO buffer layer even though the interfacial stress was slightly relaxed, which indicated a coupling between the ferroelectric and ferromagnetic orders. Furthermore, with slightly increase of BFO film thickness, both BFO and BFO/BTO bi-layer films showed anisotropic magnetic properties with higher in-plane magnetization than the values measured out-of-plane. These are attributable to strain constraint effect at the interface.

  • PDF

Electrical and Magnetic Properties of BiFeO3 Multiferroic Ceramics

  • Roy, M.;Jangid, Sumit;Barbar, Shiv Kumar;Dave, Praniti
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.62-65
    • /
    • 2009
  • The multiferroic $BiFeO_3$ has been investigated extensively in both thin film and ceramic form. However, the synthesis of a perfect sample with high resistivity is a prerequisite for examining its properties. This paper reports the synthesis of multiferroic $BiFeO_3$ along with its structural, electrical and magnetic properties in ceramic form. Polycrystalline ceramic samples of $BiFeO_3$ were synthesized by solid-state reaction using high purity oxides and carbonates. The formation of a single-phase compound was confirmed by x-ray diffraction and its lattice parameters were determined using a standard computer program. The microstructural studies and density measurement confirmed that the prepared samples were sufficiently dense for an examination of its electrical and magnetic properties. The dc electrical conductivity studies show that the sample was resistive with an activation energy of ${\sim}0.81\;eV$. The magnetization measurement showed a linear ($M{\sim}H$) curve indicating antiferromagnetic characteristics.

Structural and Electrical Properties of Sol-gel Derived BFO/PZT Thin Films with Variation of Solvents (솔-젤법으로 제작한 BFO/PZT 박막의 용매에 따른 구조적, 전기적 특성)

  • Cho, Chang-Hyun;Lee, Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.895-899
    • /
    • 2011
  • Multiferroic BFO/PZT(5/95) multilayer films were fabricated by spin-coating method on the Pt/Ti/$SiO_2$/Si substrate alternately using BFO and PZT(9/95) alkoxide solutions. The structural and dielectric properties were investigated with variation of the solvent and the number of coatings. All films showed the typical XRD patterns of the perovskite polycrystalline structure without presence of the second phase such as $Bi_2Fe_4O_3$. BFO/PZT multilayer thin films showed the typical dielectric relaxation properties with increase an applied frequency. The average thickness of 6-coated BFO/PZT multilayer film was about 600 nm. The dielectric properties such as dielectric constant, dielectric loss and remnant polarization were superior to those of single composition BFO film, and those values for BFO/PZT multilayer film were 1199, 0.23% and 12 ${\mu}C/cm^2$.

Stress Effects CoCr2O4 Film on MgO and MgAl2O4 Grown by RF-Sputter Process

  • Ko, Hoon;Choi, Kang-Ryong;Park, Seung-Iel;Shim, In-Bo;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.163-166
    • /
    • 2008
  • Multiferroic $CoCr_2O_4$ film was deposited on MgO and $MgAl_2O_4$ substrates by the rf-sputtering process. The films were prepared at an RF-magnetron sputtering power of 50 W and a pressure of 10 mtorr (20 sccm in Ar), and at substrate temperatures of $550^{\circ}C$. The crystal structure was determined to be a spinel (Fd-3m) structure by means of X-ray diffraction (XRD) with Cu $K{\yen}{\acute{a}}$ radiation. The thickness and morphology of the films were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties were measured using a Superconducting Quantum Interference Device (SQIUD) magnetometer. While the ferrimagnetic transitions were observed at about 93 K, which was determined as the Neel temperature, the magnetic properties all show different behaviors. The differences between the magnetic properties can be explained by the stress effects between $CoCr_2O_4$ and the substrates of MgO and $MgAl_2O_4$.

Detwinning Monoclinic Phase BiMnO3 Thin Film

  • Dash, Umasankar;Raveendra, N.V.;Jung, Chang Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.168-172
    • /
    • 2016
  • $BiMnO_3$ has been a promising candidate as a magnetoelectric multiferroic while there have been many controversial reports on its ferroelectricity. The detailed analysis of its film growth, especially the growth of thin film having monoclinic symmetry has not been reported. We studied the effect of miscut angle, the substrate surface, and film thickness on the symmetry of $BiMnO_3$ thin film. A flat $SrTiO_3$ (110) substrate resulted in a thin film with three domains of $BiMnO_3$ and 1 degree miscut in the $SrTiO_3$ (110) substrate resulted in dominant domain preference in the $BiMnO_3$ thin film. The larger miscut resulted in a nearly perfect detwinned $BiMnO_3$ film with a monoclinic phase. This strong power of domain selection due to the step edge of the substrate was efficient even for the thicker film which showed a rather relaxed growth behavior along the $SrTiO_3$ [1-10] direction.

Epitaxial Growth of $BiFeO_3-Ba(Cu_{1/3}Nb_{2/3})O_3$ Thin Films Deposited by Pulsed Laser Deposition

  • Baek, Chang-U;Lee, Jong-Pil;Seong, Gil-Dong;Jeong, Jong-Hun;Ryu, Jeong-Ho;Yun, Un-Ha;Park, Dong-Su;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Multiferroic thin films with composition $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$ were epitaxially grown by pulsed laser deposition on $SrRuO_3(001)/SrTiO_3$ (000) substrate $0.9BiFeO_3-0.1Ba(Cu_{1/3}Nb_{2/3})O_3$, which is assumed to be morphotropic phase boundary (MPB), that showed superior dielectric, ferroelectric and magnetic properties in our study on polycrystalline films. The structures of epitaxially grown films were characterized by means of XRD. From P-E measurements, samples exhibited typical ferroelectric hysteresis loops and large remnant polarization, whose value is much larger than those of pure BFO film. The enhancement of dielectric, ferroelectric, magnetic properties was attributed to the structural distortion induced by the BCN addition and the high physical stress effect.

  • PDF

Crystal Structure and Physical Property of Tetragonal-like Epitaxial Bismuth Ferrites Film

  • Nam, Joong-Hee;Biegalski, Michael;Christen, Hans M.;Kim, Byung-Ik
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.7-8
    • /
    • 2011
  • Basically, the lattice mismatch between film and substrate can make those BiFeO3(BFO) films distorted with strain structure. BFO phase can be stabilized on LaAlO3(LAO) represents the example of a multiferroic with giant axial ratio. Its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion and related to the rotation of the oxygen octahedra. In this study, we show that phases with a tetragonal-like epitaxial BFO films can indeed be ferroelectric and also can be stabilized via epitaxial growth onto LAO. Recent reports on epitaxial BFO films show that the crystal structure changes from nearly rhombohedral ("R-like") to nearly tetragonal("T-like") at strains exceeding approximately -4.5%, with the "T-like" structure being characterized by a highly enhanced c/a ratio. While both the "R-like" and the "T-like" phases are monoclinic, our detailed x-ray diffraction results reveal asymmetry change from MA and MC type, respectively. By applying additional strain or by modifying the unit cell volume of the film by substituting Ba for Bi, the monoclinic distortion in the "T-like" MC phase is reduced, i.e. the system approaches a true tetragonal symmetry. There are two different M-H loops for $Bi_{1-x}Ba_xFeO_{3-{\delta}}$(BBFO) and BFO films on SrTiO3(STO) & LAO substrates. Along with the ferroelectric characterization, these magnetic data indicate that the BFO phase stabilized on LAO represents the first example of a multiferroic with giant axial ratio. However, there is a significant difference between this phase and other predicted ferroelectrics with a giant axial ratio: its crystal structure is not strictly tetragonal, but tetragonal with a slight monoclinic distortion. Therefore, in going from bulk to highly-strained films, a phase sequence of rhombohedral(R)-to-monoclinic ["R-like" MA-to-monoclinic, "T-like" MC-to-tetragonal (T)] is observed. This sequence is otherwise seen only near morphotropic phase boundaries in lead-based solid-solution perovskites (i.e. near a compositionally induced phase instability), where it can be controlled by electric field, temperature, or composition. Our results show that this evolution can occur in a lead-free, stoichiometric material and can be induced by stress alone. Those major results are summarized as follows ; 1) Ba-doping increases the unit cell volume, 2) BBFO on LAO can be fully strained up to x=0.08 as a strain limit (Fig. 1), 3) P(E) & M(H) properties can be tuned by the variation of composition, strain, and film thickness.

  • PDF

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성)

  • Song, Jong-Han;Nam, Joong-Hee;Kang, Dae-Sik;Cho, Jung-Ho;Kim, Byung-Ik;Choi, Duck-Kyun;Chun, Myoung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.222-227
    • /
    • 2010
  • $BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.

Microstructure of the Oriented Hexagonal HoMnO3 Thin Films by PLD

  • Choi, Dong-Hyeok;Shim, In-Bo;Kouh, Tae-Joon;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.141-143
    • /
    • 2007
  • We have fabricated (0001) oriented hexagonal $HoMnO_3$ thin films with thickness of 300 nm using Pulsed Laser Deposition (PLD) technique on $Pt(111)/Ti/SiO_2/Si$ substrates. The XRD $\theta-2\theta$ pattern shows only (0002), (0004), and (0008) reflection of a hexagonal phase, and the full width at half maximum (FWHM) of (0004) peak is under $1.6^{\circ}$. The chemical state of Mn from XPS spectra of the films reveals the presence of $Mn^{3+}$ only. The temperature dependence of dielectric constant shows a weak anomaly at magnetic $N\acute{e}el$ temperature $(T_N)$, which is about 70 K.

Preparation and Characterization of $BaTiO_3-CuFe_2O_4$ Bi-Layer Thin Films Prepared By Pulsed Laser Deposition

  • Yoon, Dong-Jin;Kim, Kyung-Man;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.209-209
    • /
    • 2010
  • Multiferroic properties of $BaTiO_3-CuFe_2O_4$ thin films grown on highly-textured Pt(111)/$TiO_2/SiO_2$/Si(100) substrates were studied. $CuFe_2O_4$ ceramic target was synthesized by mixing oxide powders of CuO, $Fe_2O_03$, $BaTiO_3$ ceramic target was also prepared separately. The film structure was of bi-layer type, where $BaTiO_3$ layer lies underneath of $CuFe_2O_4$ layer, where both layers were grown by pulsed laser deposition technique. We will report the ferroelectric and magnetic properties of $BaTiO_3-CuFe_2O_4$ bi-layer films in some detail.

  • PDF