Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.168

Detwinning Monoclinic Phase BiMnO3 Thin Film  

Dash, Umasankar (Department of Physics, Hankuk University of Foreign Studies)
Raveendra, N.V. (Department of Physics, Hankuk University of Foreign Studies)
Jung, Chang Uk (Department of Physics, Hankuk University of Foreign Studies)
Publication Information
Abstract
$BiMnO_3$ has been a promising candidate as a magnetoelectric multiferroic while there have been many controversial reports on its ferroelectricity. The detailed analysis of its film growth, especially the growth of thin film having monoclinic symmetry has not been reported. We studied the effect of miscut angle, the substrate surface, and film thickness on the symmetry of $BiMnO_3$ thin film. A flat $SrTiO_3$ (110) substrate resulted in a thin film with three domains of $BiMnO_3$ and 1 degree miscut in the $SrTiO_3$ (110) substrate resulted in dominant domain preference in the $BiMnO_3$ thin film. The larger miscut resulted in a nearly perfect detwinned $BiMnO_3$ film with a monoclinic phase. This strong power of domain selection due to the step edge of the substrate was efficient even for the thicker film which showed a rather relaxed growth behavior along the $SrTiO_3$ [1-10] direction.
Keywords
$BiMnO_3$; detwinning; monoclinic; symmetry lowered substrate surface; miscut;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. T. Tambunan, K. J. Parwanta, S. K. Acharya, B. W. Lee, C. U. Jung, Y. S. Kim, B. H. Park, H. Jeong, J.-Y. Park, M. R. Cho, Y. D. Park, W. S. Choi, D.-W. Kim, H. Jin, S. Lee, S. J. Song, S.-J. Kang, M. Kim, and C. S. Hwang, Appl. Phys. Lett. 105, 063507 (2014).   DOI
2 S. K. Acharya, R. V. Nallagatla, O. T. Tambunan, B. W. Lee, C. Liu, C. U. Jung, B. H. Park, J.-Y. Park, Y. Cho, D.-W. Kim, J. Jo, D.-H. Kwon, M. Kim, C. S. Hwang, and S. C. Chae, ACS Appl. Mater. Interfaces 8, 7902 (2016).   DOI
3 B. W. Lee and C. U. Jung, Appl. Phys. Lett. 96, 102507 (2010).   DOI
4 Q. Gan, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 70, 1962 (1997).   DOI
5 G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).   DOI
6 M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).   DOI
7 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).   DOI
8 J.-H. Lee, P. Murugavel, H. J. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M.-H. Jung, Y. W. Oh, Y.-W. Kim, J. G. Yoon, J.-S. Chung, and T. W. Noh, Adv. Mater. 18, 3125 (2006).   DOI
9 D. Lee, J.-H. Lee, P. Murugavel, S. Y. Jang, T. W. Noh, Y. Jo, M.-H. Jung, Y.-D. Ko, and J.-S. Chung, Appl. Phys. Lett. 90, 182504 (2007).   DOI
10 B. Lee, O.-U. Kwon, R. H. Shin, W. Jo, and C. U. Jung, Nanoscale Res. Lett. 9, 1 (2014).   DOI
11 Oswaldo Dieguez and Jorge iniguez, Phys. Rev. B 91, 184113 (2005).
12 H. W. Jang, D. Ortiz, S.-H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson, X. Pan, R. Ramesh, and C.-B. Eom, Adv. Mat. 21, 817 (2009).   DOI
13 B. W. Lee, C. U. Jung, M. Kawasaki, and Y. Tokura, J. Appl. Phys. 104, 103909 (2008).   DOI
14 Antonio F. Moreira dos Santos, Anthony K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84, 91 (2004).   DOI